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More people in the world are bilingual than monolingual.

But until very recently, most research on language and cognition
examined only monolingual speakers of a single language and
typically speakers of English as the native language.



Why have bilinguals been considered special despite the large number
of people in the world who speak more than one language?

There are many reasons but a key observation is that learning an L2
past early childhood is a difficult task with mixed outcomes.

Even highly successful late L2 learners speak with an accent and
appear to fail to acquire subtle aspects of the L2 grammar.

Flege et al. (1995) Johnson & Newport (1989)



In the past 15-20 years, that situation has changed:

Papers published on “bilingual language processing” since 1994

[Data from the Web of Science]



On the 125th anniversary of the journal Science, Kennedy
and Norman (2005) identified the biological basis of
second language (L2) learning as one of the top 125
questions to be answered in the next 25 years of research:



 Bilingualism and second language learning provide a lens for
researchers to examine aspects of the underlying cognitive
architecture that are obscured by native language skill when
investigating language learning and language performance in the
first or dominant language only. We would not know that these
changes occur unless there was another language.

 The bilingual’s two languages sometimes converge and
sometimes compete. Identifying the conditions that give rise to each
of these outcomes reveals the constraints and plasticity that underlie
language representation and its cognitive and neural underpinnings.

 Bilingualism is a tool for cognitive scientists



Penn State University The Netherlands

University Park, PA Spain
Germany
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China

Research Collaborations here and abroad:

Bilingualism takes different forms in different places



The Penn State Center for Language Science Bilingualism Network



The Center for Language Science PIRE Project:

Bilingualism, mind, and brain: An interdisciplinary program in
cognitive psychology, linguistics, and cognitive neuroscience

A network for research and training:

Domestic Partners:

Haskins Laboratories, Yale University
VL2 NSF Science of Learning Center, Gallaudet University

International Partners:

Radboud University, Nijmegen, The Netherlands
Max Planck Institute, Leipzig, Germany
University of Granada, Granada, Spain
University of Pompeu Fabra, Barcelona, Spain
ESRC Centre for Research on Bilingualism, Bangor, Wales
Beijing Normal University, Beijing, China
University of Hong Kong, Hong Kong, China





“bike” “fiets”

Dutch-English speaker

The bilingual is a mental juggler: Both languages appear to be
active regardless of the requirement to use one language alone:

Bilinguals often code switch between the two languages in the middle of a
sentence but rarely make the error of speaking the unintended language



What is the consequence of parallel activity and competition across
the bilingual’s two languages? The hypothesis is that mental juggling
creates expertise.

Bilingualism appears to confer specific cognitive benefits to executive
function and attention to enable bilinguals to:

 ignore irrelevant information

 resolve conflict among competing alternatives

 minimize the costs associated with task switching



Methods to investigate language learning and language processing
include behavioral measures, e.g., eye tracking and acoustic
analyses of spoken language, and also neuroscience methods.



Computational models of language learning



Comparative approaches to language learning



Deaf signers activate ASL translations while reading in English

Comparison across languages and across language experience



To capture the mechanisms that enable or restrict language learning and
that account for proficient bilingual performance and its cognitive
consequences, we need a comparative approach to bilingualism that
exploits different methods, the special properties of different language
pairings, and different language learning contexts but that share
common ground.

We and our PIRE partners share common ground in that we utilize
similar methods, making our labs fundamentally interchangeable
with respect to the basic science.

The topic of bilingualism quite naturally draws students who already
have language training and are often bilingual themselves.

This common ground enables research training and sustained
collaboration because it is mutually beneficial.



Programs for training:

 Undergraduate summer research study abroad:
8 undergraduates each summer

 Graduate research internships

Dual Title Doctoral Degree in Language Science

Psychology, German, Spanish, Communication Sciences
and Disorders

Proseminar in the Language Science of Bilingualism

 Postdoctoral and early career faculty research abroad



Leveraging PIRE resources to create infrastructure

 PIRE Visiting Language Neuroscience Scholar Program

 Virtual Colloquium Series with our international partners: Students
can meet our PIRE partners prior to travel abroad

 Annual Young Language Scientist Colloquium organized by
graduate students

Graduate students have organized an independent meeting
R-ticle to share methodological skills and discuss papers

 Support for international students at Penn State to pursue research
abroad and for students at the partner sites to travel to Penn State

 International visitors



Planned PIRE initiatives

 PIRE website

 Joint symposia at professional meetings: The first set of
proposals were submitted to the International Symposium on
Bilingualism (ISB8) to be held in Oslo, Norway in June 2011

 Bilingualism Bulletin

 PIRE research conference

 Research abroad blogs

 Bilingualism Summer Schools: To be held twice during the
PIRE, once at Penn State and once in Granada



Management: Putting the pieces of the PIRE together



Some benefits of collaborative networks for research and training:

1. Data collection (in both directions: we assist our colleagues
who work in locations in which bilingualism is more prevalent
by providing monolingual controls)

2. Professional development for graduate students: Visit host
laboratories, give research talks, interact with research mentors,
acquire complementary technical skills, establish an international
network of young researchers

3. Exchanges in both directions: Steady stream of visitors
increases diversity at the home institution

4. Diversity breeds diversity: Undergraduate research students
who are themselves bilingual are likely to seek out research
opportunities in this context





Thank you!

http://www.youtube.com/watch?v
=BZprtPat1Vk

The words of our president on encouraging bilingualism:



The Science of Learning
University of Queensland,

Australia

Robert Colvin
robert@itee.uq.edu.au

The Science of Learning University of Queensland, Australia



Overview

Established officially in June 2010

Research focus: Attention

I Builds on strengths at UQ

I Relevant to the classroom

I Underlies memory storage

I Appears to involve multiple regions of the brain

I Complementary to research at other SLCs

The Science of Learning University of Queensland, Australia



The Centre

Directors:

I Pankaj Sah, QBI
Professor of neurophysiology

I Ottmar Lipp, School of Psychology
Professor of Psychology (Emotion and Learning)

Advisory Panel:

I Perry Bartlett, QBI (Director)
Professor of neurophysiology

I Professor Deborah Terry, Deputy Vice-Chancellor

The Science of Learning University of Queensland, Australia



Other participants

I Cognitive neuroscience: Prof. Jason Mattingley

I Brain imaging: Prof. David Ruetens

I Neurophysiology: A/Prof. Bruno van Swinderen

I Mathematics education: Prof. Merrilyn Goos

I Cognitive psychology: Dr Paul Dux
I Computational neuroscience: Dr Robert Colvin (me)

I (Background: theoretical computer science and complex
systems)

The Science of Learning University of Queensland, Australia



Collaboration with
Australian Council for Educational Research (ACER)

I Conduit for testing research outcomes in the classroom

I Partner in feeding teacher input back to laboratory

The Science of Learning University of Queensland, Australia



Proposed collaborative approach

Each discipline involved (eg. neurophysiology, psychology) answers
the same specific research question using own techniques

Synthesis of data occurs through two interfaces:

I Brain imaging

I Models and simulations

Successful trials are adapted for the classroom

The Science of Learning University of Queensland, Australia



History

I Can neuroscience make an impact in the classroom

I Myself hosted by Soo-Siang, CELEST, TDLC, Feb. ’09

I Soo-Siang visited QBI, April ’09

I Scoping of centre, collaborators

I Seed funding secured June ’10

Outlook:

I Funding from State and Federal Governments.

The Science of Learning University of Queensland, Australia



Symposium on Attention

July 2011 (tentative)
The University of Queensland
Brisbane, Australia

Speakers from

I Neuroscience

I Psychology

I The teaching profession

I Government bodies

Please contact me for more details if interested.

The Science of Learning University of Queensland, Australia



Translation in the Science of Learning Centers 

Brief Introductory Comments 

Broad meanings of “translation” and “translation research” 
reflected in the presentations 

 Learning research and education research: overlap and 
differences reflected in the presentations 

 A useful framework based on focusing on improvements in 
education as a  complex system  

   (Maroulis et al. Science Oct. 1st, 2010) 

  “mechanism based”   (micro-level) 
  “effects based”   (macro-level) 



 Translational Work at CELEST and LIFE  

CELEST 

  * Heather Ames Versace: The applied neuroscience of learning 

  * Jonathan Brumberg: Brain-computer interfaces for 
communication 

  * Massimiliano Versace: Brain-inspired computing 

LIFE  

  * Roy Pea: Augmenting educational designs with social 
learning 

  * Bill Penuel: Curriculum design studies focused on leveraging 
personal relevance and social practices in elementary science 

  * Dan Schwartz: Different models of the relation between 
research and translation 



  Translational Work at PSLC and SILC  
  PSLC: 

   * Ken Koedinger: In vivo experiments and cumulative theory as 
keys to translation  

   * Vincent Aleven: From research to practice – Interactive 
examples and diagrammatic self-explanation in an intelligent 
tutoring system 

   * David Klahr: Classroom experiments with TED, the Tutor for 
Experimental Design 

 SILC: 
  * Nora Newcombe: SILC's strategy for supporting STEM 

education through spatial  learning 
  * Dedre Gentner: Supporting early STEM learning with spatial 

analogy and language 
  * Ken Forbus: Translating sketch understanding from 

laboratories to classrooms, and back again 



Translational Work at TDLC and VL2  

TDLC: 
 * Gary Cottrell (UCSD): Overview of at TDLC 

 * Terri Jernigan (UCSD): A neurodevelopmental case for 
personalizing education 

 * Sean Kang (UCSD) : Distributed practice over the long-term: 
Should spacing be expanding or equal interval? 

VL2: 
 * Thomas Allen (Gallaudet) : Overview of translation at VL2 

 * Donna Morere (Gallaudet) : Identifying factors influencing 
early literacy for deaf students through longitudinal study of 
student, family, and school characteristics 



Closing Comments 

Where is the research focused? 

 What lies behind considerations of  “Fidelity”  and “Adaptation” 
     Fidelity to the design 
     Adaptation to the environment 

A key challenge facing education research is to integrate insights about  

“micro‐level” mechanisms with evidence about aggregate, “macro‐level” 

outcomes that emerge from processes of implementing those 

mechanisms. 



On a personal note,  from translation research to 
implementation research 

Looking at education as an integrated complex system whose 
outcome is learning: 

Where is the missing research? 

   “Adaptation” to an environment (i.e. learning within organizations) 

    
 ¨Sustainability” of improved environments (i.e. learning by the 
educational organization) 



Brain-computer interfaces for communication

SLC PI Meeting - Translational Research

Jon Brumberg, Ph. D.

1Department of Cognitive and Neural Systems, Boston University, Boston, MA

2CELEST: Center of Excelence for Learning in Education, Science and Technology

brumberg@cns.bu.edu

October 14, 2010



Outline

1 What is a BCI?

2 CELEST research for speech prosthesis

3 Translational steps for BCI communication

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 2 / 15



Brain Computer Interfaces

What is a brain-computer interface (BCI)?

A method that facilitates interaction between neural activity and a

computational system

Input: Cochlear implant, retinal implant, cortical sensory prosthesis

Output: Motor cortical prosthesis - computer cursor, robotic limb,

communication/typing, speech synthesis

Other: Smart limb prostheses, deep brain stimulators, seizure

pallative devices, replacement neural circuits

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 3 / 15
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Electrode Technology

Microelectrodes: Chronic extracellular microelectrodes

• Neurotrophic Electrode and Blackrock (Utah) arrays for

humans
• Capable of recording for 4-5 years (so far)
• Some systems wireless

Fig. 1, Brumberg et al. (2010)

Speech Communication

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 4 / 15



Electrode Technology

EEG: Electroencephalography

• Commercial systems - no longer hand made / assembled
• Utilize active electronics to improve SNR and reduce

skin impedance
• Some wireless systems

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 4 / 15



Electrode Technology

ECoG: Electrocorticography

• Middle-zone between EEG and microelectrodes
• Closer to source signal, increases SNR and higher

frequency bandwidth

Fig. 1 from Schalk et al. (2008) Journal of Neural Engineering

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 4 / 15



Communication Applications

P300 Speller: Oddball, rare-stimulus event related potential (ERP)

SSVEP Speller: Visual evoked potential proportional to attended strobe

stimulus

SMR Speller: Motor imagery style; cursor selection

ERD/S Speller: Motor imagery style; adaptations for binary or multi-state

decision

Machine learning:

• Motor imagery; virtual keyboard
• Speech imagery; vowel comparisons

Intracortical trial: Cursor control for item selection

• Braingate
• Neurotrophic Electrode

SMR synthesis: Motor imagery style; speech sound synthesis

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 5 / 15



Requirements for Communication

1 Fast
• Ideally �uent / real-time and progressive
• �Texting� speed for spellers, utilize language prediction
• Synthesis techniques within 100-200 ms of intention & transitions
between sounds within 500 ms

2 Accurate
• Conventionally 70-75% accuracy
• Higher accuracy tends to be slower
• Needs to be intelligible and/or have error-correction.

3 Intuitive
• Natural or optimal for communication modality
• Speech motor imagery for real-time synthesis
• Limb motor imagery for typing (and synthesis)
• Able to start / stop

Not a requirement, but invasive vs. non-invasive a big factor

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 6 / 15
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Outline

1 What is a BCI?

2 CELEST research for speech prosthesis

3 Translational steps for BCI communication

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 7 / 15



Team based research

Multifaceted approach using between and within university collaborations

• Microelectrode design

• Hardware design

• (Pre)processing and

decoding techniques

• BCI implementation and

translation

• Improve Neurotrophic Electrode (with

Neural Signals, Inc.)

• Animal implants (primate @ MIT; bird

@ BU)

Improve SNR and unit detection

Quantify longevity in terms of

�structural� and �functional�

across species

Motivate improvements to FDA

approved design for human use

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 8 / 15



Team based research

Multifaceted approach using between and within university collaborations

• Microelectrode design

• Hardware design

• (Pre)processing and

decoding techniques

• BCI implementation and

translation

Develop mobile systems for intracortical and

non-invasive wireless telemetry

Current: wireless via Neural Signals, Inc.

collaboration (limited

bandwidth)

Future: wireless via MIT, Neural

Signals collaboration for high

bandwidth

• Have begun feasibility

study with EEG

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 8 / 15



Team based research

Multifaceted approach using between and within university collaborations

• Microelectrode design

• Hardware design

• (Pre)processing and

decoding techniques

• BCI implementation and

translation

• Intracortical signals processed for: LFP

(low band), MUA (high band) and

spikes

• EEG / ECoG, processed for frequency

amplitude, band power, instantaneous

phase / frequency

• Discrete-time adaptive �ltering: Kalman

�lter, Weiner �ltering, Least mean

squares �ltering.

• Supervised classi�cation: Support vector

machines, discriminant analysis, logistic

regression - other machine learning

techniques

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 8 / 15



Team based research

Multifaceted approach using between and within university collaborations

• Microelectrode design

• Hardware design

• (Pre)processing and

decoding techniques

• BCI implementation and

translation

  Speech
motoneurons

Site of 
stroke
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Neural
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Result of interdisciplinary and collaborative research within academia and

industry
J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 8 / 15



Microelectrode design & evaluation

Purpose

Intracortical BCI must perform reliably for extremely long durations

Current design:

• 3-4 �large� (50 µm.) gold wires

• Placed inside a 1 mm. glass

cone - relatively distant (300

µm.)

• Filled with growth factor to

encourage axon growth

New design:

• 3 �small� (25 µm.) pairs of
platinum wires: stereotrode

• Reduce spatial smoothing with

smaller surface area

• Able to coregister putative

spikes across two channels

• Modify cone to 300 µm.
polyimide tube for bird implants

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 9 / 15
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Motor Approach to Communication BCI: intracortical

Key concept

Speech is a motor behavior

History

• Leverage rigorous motor BCI foundation to speech problem

• 30-years of intracortical and EEG research for motor behavior

Theory

• Neurocomputational model of speech production (DIVA) developed in

our lab

• Makes speci�c hypotheses about neural architecture during speech

production

• Veri�ed via experimental results with fMRI and articulometry

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 10 / 15



Motor Approach to Communication BCI: intracortical

Key concept

Speech is a motor behavior

Translation: from theory to application

(0528_Full_NEW.mp4)

./Movies/0528_Full_NEW.mp4
J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 10 / 15



Motor Approach to Communication BCI: intracortical

Key concept

Speech is a motor behavior

Translation: from theory to application

Performance increased from 45-70%

(max 89%) within each 2 hour

session

Learning BCI control requires

instantaneous, real-time feedback.

• Need to retrain every day,

working on long-term, adaptive

solutions

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 10 / 15



Motor Approach to Communication BCI: non-invasive

Method: Whole head EEG (though primarily sensorimotor rhythms)

Objective: To decode speaking intent; alternatively �voicing� detection

• Ask subjects produce a

known speech sound for

a speci�ed duration

(visual cue)

• Use SMR band power to

determine production

from rest

• Needed for �uent speech:

• pauses are halmarks
of speech

• turn on/o�
communication device

E. Stephen, pilot results

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 11 / 15



Motor Approach to Communication BCI: non-invasive

Method: Whole head EEG (though primarily sensorimotor rhythms)

Objective: control a 2D vowel synthesizer

• Ask subjects to produce

a known speech sound

for a speci�ed duration

(visual or auditory cue)

• Use discrete-time

adaptive �ltering

techniques of SMR band

power to predict

instantaneous vowel

estimate

• supply real-time

synthesis and feedback J. Brumberg, pilot results

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 11 / 15



Outline

1 What is a BCI?

2 CELEST research for speech prosthesis

3 Translational steps for BCI communication
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�Augmenting� AAC devices

AAC: Augmentative and Alternative Communication

• The primary solution for communication by those with many speech

disorders: akinetic mutism (ALS), cerebral palsy, etc.

• Have already uncovered optimal human computer interaction designs

• Utilize muscle activity, eye gaze

• Objective: Add EEG / BCI channel
• Translation from lab to users

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 13 / 15



Industry-Academia Collaboration

New Collaboration

Began partnership with Dynavox Technologies in Summer 2010

• Dynavox is a world leader in AAC device development and distribution

• CELEST Catalyst to assist development of statement of work and

university sponsored research project

• Sponsoring funding graduate student and travel to academic

conferences.

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 14 / 15



Thank You!

Supported in part by CELEST, a National Science Foundation Science of

Learning Center (NSF SMA-0835976) and by the NIH (R01-DC00763 and

R44-DC007050)

Collaborators

Boston University

Frank Guenther
Misha Panko
Robert Law
Sean Lorenz
Emily Stephen

Nan Jia
Tim Gardner

MIT

Earl Miller (CELEST
Co-PI)

Scott Brincat
Rahul Sarpeshkar

Dynavox Technologies

Bob Cunningham (CTO)
Greg Lesher (Director of

Research)

Neural Signals, Inc.

Dr. Philip Kennedy
Dinal Andreasen
E. Joe Wright

Dr. Princewill Ehrim
Dr. Hui Mao

J. Brumberg (CNS, CELEST) SLC 2010, BCI for Communication October 14, 2010 15 / 15



Neural designs for nanochip applications

Department of Cognitive and Neural Systems

Boston University

Center of Excellence for Learning in Education, Science and Technology

MASSIMILIANO VERSACE
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Mission Statement

The CELEST technology effort 

promotes translational research 

through 

industry partnerships

education, and

outreach 

to facilitate real-world 

technological applications of 

CELEST research

CELEST & Technology

MOTIVATION SYNAPSE CONCLUSIONS
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What is the problem?

MOTIVATION SYNAPSE CONCLUSIONS
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clock speed 

of individual transistors 

is leveling off

Von Neumann architecture

CPU RAM

communication

bottleneckProcess Data

Computers physically separate the functions of computation and 

data storage

Our brains do not: synapses!

How could a computer with merged computation and data storage function?

Clock Speed

Transistor Count

Motivation: Moore‟s Law

Bad news!

MOTIVATION SYNAPSE CONCLUSIONS
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year

#
 t
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n

s
is

to
rs

Moore‟s law „meltdown‟

The DARPA SyNAPSE (Systems of 

Neuromorphic Adaptive Plastic Scalable 

Electronics) program seeks to find a solution 

to the imminent failure of Moore's law 

for conventional chips

SyNAPSE goal: “enable electronic 

neuromorphic machine technology that is 

scalable to biological levels”

traditional algorithms perform poorly in the complex, 

real-world environments where biological agents thrive

traditional microprocessors are extremely inefficient at 

executing highly distributed, data-intensive algorithms

vs.

The DARPA SyNAPSE project

MOTIVATION SYNAPSE CONCLUSIONS
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The discovery of memristors

Leon Chua

1971

Stan Williams         Greg Snider

2008 
Information 

& Quantum Systems Lab

MOTIVATION SYNAPSE CONCLUSIONS
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When the device is built, it will have 

unknown dynamics

CELEST researchers bring expertise 

with large-scale, biologically 

motivated neural systems that 

perform behavioral tasks

Memristors are “crummy” devices

What are very compact but imprecise 

and unreliable nanoscale devices 

good for?

BUILD BRAIN-LIKE CHIPS!

Taming the beast

MOTIVATION SYNAPSE CONCLUSIONS
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Hardware Architectures

Large scale 
simulations

Virtual 
environment

106 “neurons”/cm2

1010 “synapses”/cm2

~100 milliwatts/cm2

~106 neurons/cm2

~1010 synapses/cm2

~2 milliwatts/cm2

vs.

Human cortex Hardware goals

The DARPA SyNAPSE project

MOTIVATION SYNAPSE CONCLUSIONS
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10,000 chips, 1000 Watts

stuffed in a shoebox

106 “neurons”/cm2

1010 “synapses”/cm2

~100 milliwatts/cm2

Hardware goals

Microwave oven = 800 Watts

Dishwasher = 1500 Watts

~1000 Watts

Wrong hardware!

Stiff, nonlinear dynamical systems 

very inefficient in digital computers

Blue Gene 

1 GW, thousands 

of racks

Brain

20 W

1.3Kg

1010 neurons

1014 synapses

The DARPA SyNAPSE project

MOTIVATION SYNAPSE CONCLUSIONS
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10

Overcome key 

processing bottlenecks

10

Neuromorphic hardware

A brain-like hardware pushes 

modelers to face and solve tough 

constraints that brains face

local

low-power

robust

computation Moore's law meltdown

Happy Marriage

MOTIVATION SYNAPSE CONCLUSIONS
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The Team

Ennio Mingolla

Max Versace

Anatoli Gorchetchnikov

Heather Ames

Ben Chandler

Jasmin Léveillé, started in April 2010

Gennady Livitz, started in August 2010

New team members

MOTIVATION SYNAPSE CONCLUSIONS
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Challenges

Bridging the gap

Will not work… Maybe this will

von Neumann architecture Neuromorphic architecture

gap



“Isolated” learning “Embedded” learning

One man, one model One man, one million models

MOTIVATION SYNAPSE CONCLUSIONS
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Phase I

SyNAPSE projects for Phase I

Learning Analyze neural learning rules to inform chip design

Animat Create an intelligent agent that can navigate a 

virtual environment and replicate rodent behavior

Infrastructure Build a software framework to speed up modeling and 

parameter search 

MOTIVATION SYNAPSE CONCLUSIONS
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L2: Learning Laws

.

Hebb + passive 

decay

GVH

Learning Laws (L2)

MOTIVATION SYNAPSE CONCLUSIONS
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Cells in animal visual areas 

self-organize in early life to be

selective for orientation and input eye

Spatially regular 

orientation selectivity horizontal

ocular dominance

clusters right eye

How do learning laws embedded in 

hardware self-organize the visual 

system compatible with 

what is found in biology and

what is allowed by the chip 
HONESTY ITEM MONETA CHALLENGES PHASE IIINTRO L2

L2: Learning Laws
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natural images

two eyes

four thalamic populations

one visual cortical area

Orientation Ocular dominance

L2: Learning Laws

MOTIVATION SYNAPSE CONCLUSIONS
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MoNETA

MOdular Neural Exploring Traveling Agent

MoNETA

MOTIVATION SYNAPSE CONCLUSIONS
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Virtual Environment

MOTIVATION

SENSORY 

PROCESSING

NAVIGATION

MoNETA

Real Environment

MOTIVATION

SENSORY 

PROCESSING

NAVIGATION

MOTIVATION SYNAPSE CONCLUSIONS
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Land Air

&

Educational spinoff: CN810

MOTIVATION SYNAPSE CONCLUSIONS
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ItEM

ITerative Evolution of Models

ItEM

ItEM eliminates much of the

manual effort required to explore the 

large space of possible model variations

Quicker iteration on model design

How to build a brain?

MOTIVATION SYNAPSE CONCLUSIONS
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Phase II

Goal: function

Model whole brain 

system capable of  

intelligent behavior in 

increasingly complex 

environments

Dynamic stability of small networks

Canonical laminar cortical circuit able to 

stably self-organize its representation 

Subgoals: network

Subgoals: whole brain system

Sensory and associative
attention, multiple object 

recognition, auditory 

classification and localization, 

proprioception, 

symbolic representations

Navigation
visually guided approach,     

learned response movement

Planning & execution
multiple goal representation, 

sequencing, 

adaptively timed behavior

MOTIVATION SYNAPSE CONCLUSIONS



Department of Cognitive and Neural Systems

Boston University

Center of Excellence for Learning in Education, Science and Technology

QUESTIONS



Augmenting educational 
designs with social learning 

Roy Pea 
Stanford University, LIFE Center 



Roots of translational research


•  Vannevar Bush (1945) 

•  Donald Stokes (1997) 



Roots of translational research


•  Vannevar Bush (1945) 

•  Donald Stokes (1997) 



Stokes (1997) Pasteur’s Quadrant




Translational research in medicine 

•  NIH translational research: 60 Clinical and 

Translational Science Award (CTSA) centers funded 
by 2012 with $500Mil per year 

•  Translational research in medicine:  
•  “effective translation of the new knowledge, mechanisms, 

and techniques generated by advances in basic science 
research into new approaches for prevention, diagnosis, and 
treatment of disease is essential for improving 
health" (Fontanarosa & DeAngelis, 2002, p. 1728).  

•  Yet also:  
•  "improving access, reorganizing and coordinating systems of 

care, helping clinicians and patients to change behaviors 
and make more informed choices, providing reminders and 
point-of-care decision support tools, and strengthening the 
patient-clinician relationship" (Woolf, 2008).  



Type-1 and Type-2 translational research  


•  Institute of Medicine’s Clinical Research 
Roundtable  

•  T1:  
•  “the transfer of new understandings of disease 

mechanisms gained in the laboratory into the 
development of new methods for diagnosis, 
therapy, and prevention and their first testing in 
humans. ”  

•  T2:  
•  “the translation of results from clinical studies into 

everyday clinical practice and health decision 
making.”  



Type I and Type II Matrix: Translational 
Research in the Learning Sciences 




Four features of translational research in 
the learning sciences 


1.  Intentional stance 
2.  Guided by descriptive analysis of systemic 

factors contributing to human practice 
dynamics 

3.  Embodying a prescriptive theory of action for 
how translational research will leverage the 
systemic factors hypothesized to contribute 
most to enabling the human practices to 
change 

4.  Reciprocal influences of science and practice 
improvements 





(National Science Foundation, 2010) 




Special challenges of translational research for 
LIFE social learning focus


•  LIFE purpose: To develop and test principles about 
the social foundations of human learning in informal 
and  formal environments with the goal of enhancing 
human learning from infancy to adulthood 

•  The systemic factors that contribute to human 
practice dynamics are very different for:  

•  Family/home settings (informal learning, typically)  

•  Community or after-school settings/programs 
(informal education)  

•  School and workplace training settings (formal 
education)  



“Arcs of work” – LIFE Translational Research 


1)  Making curricula more socially responsive 
2)  Leveraging “the mere belief in social” for technology-

enhanced STEM learning 
3)  Social role playing for improving Advanced 

Placement courses  
4)  Brain measures linked to socio-cultural context of 

bilingual language acquisition 
5)  Social robotic language teaching aids in the 

preschool 
6)  Using social learning and gaming principles to 

encourage energy conservation 
7)  From ‘co-viewing media’ to ‘joint media engagement’ 

for science learning   



Leveraging Student Interest and 
Choice in Designs for STEM 
Learning in Formal and Informal 
Contexts 

William R. Penuel 
SRI International 



LIFE Researchers Involved 
•  Philip Bell, University of Washington, Seattle 
•  John Bransford, University of Washington, Seattle 
•  Nancy Vye, University of Washington, Seattle 
•  Carrie Tzou, University of Washington, Bothel 
•  Giovanna Scalone, University of Washington, Seattle 
•  Kari Shutt, University of Washington, Seattle 
•  Katie Van Horne, University of Washington, Seattle 
•  Tiffany Lee, University of Washington, Seattle 
•  Kieran O’Mahony, University of Washington, Seattle 
•  Rachel Phillips, University of Washington, Seattle 
•  Christopher Harris, SRI International 
•  Britte Haugan Cheng, SRI International 
•  William R. Penuel, SRI International 



The Need for Innovation in STEM 
Education 

RECOMMENDATION 5: 
CREATE OPPORTUNITIES 
FOR INSPIRATION THROUGH 
INDIVIDUAL AND GROUP 
EXPERIENCES OUTSIDE THE 
CLASSROOM   
STEM education is most 
successful when students 
develop personal connections 
with the ideas and excitement of 
STEM fields. This can occur not 
only in the classroom but also 
through individualized and 
group experiences outside the 
classroom and through 
advanced courses.   



Choosing and Valuing: Linked Social 
Processes in Learning 

Source: Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). 
Planning early for careers in science. Science, 312, 1143-1144. 



Foundations of Interest in Early 
Childhood 
•  Children are “born investigators” (National Research Council, 

2010) 
•  Parents can and do extend children’s emerging interests in 

science expressed in everyday settings by providing brief 
explanations of phenomena they encounter in places like 
museums (e.g., Crowley & Galco, 2001) and reflecting on 
experiences afterwards in other settings (Bell et al., 2006) 

•  To date, much intervention research focused on interest 
development focuses on out-of-school science (Bell, 
Lewenstein, Shouse, & Feder, 2009) 



LIFE Study of Kindergartners’ Images of 
Science (Lee, 2010) 
•  Research Question: What are beginning kindergarten 

scientists’ images of science? 
•  Participants (n = 33) 

–  17 females, 16 males 
–  Students come from an elementary school consisting of 72 percent 

Caucasian, 16% Asian, and 10% multi-ethnic students 
–  Data collected within students’ first two months of school 
–  Curriculum in use: Full Option Science System  

•  Methods 
–  Draw a Scientist Test (Chambers, 1983) 
–  Interviews with students related to conceptions of science 



LIFE Study of Kindergartners’ Images of 
Science (Lee, 2010) 
•  These young children entered school able to identify science-

related activities and were aware of some scientific terms like 
“experiment” and “chemistry 

•  Children’s developing conceptions of science were varied but 
would be considered by adults to be relevant to science (e.g., 
chemistry labs, science museums, school science experiments) 

•  Students’ reported out-of-school science experiences and 
interests did not align with school science activities  

Media-Influenced 

How can we create meaningful connections 
between these various images of science to 
develop a coherent and comprehensive 
image of science? 

Everyday School 



Redesigning Widely-Used Inquiry 
Science Kits 
•  FOSS and other “inquiry kits” used in the kindergarten 

study have been adopted by many US schools and districts 
•  Two linked efforts focus on leveraging findings about 

choice, agency, and positioning to inform the redesign of 
kits to enhance interest and learning 
–  Ethnographic studies in LIFE highlight how the fields of choice 

experienced by learners substantially shape their learning in 
informal environments 

–  Also, in agentive ways, children often self-select learning topics 
and how they choose to learn, including with whom  

–  Positioning (Harré, 2008), acts of defining and maintaining 
clusters of rights and duties associated with performing certain 
actions strongly shape the field of choices individuals can pursue 



Redesigning Widely-Used Inquiry 
Science Kits 

Isopod Habitat 
Challenge Team 

Micros and Me Team 

Critique of Existing 
Kits 

Topic-based 
Episodic inquiry 
No revision 
Teacher-directed 

Presumed relevance 
Not consequential  
Presumed to be 
acultural, but not 
inclusive 

Focus of Redesign Challenge-based 
Sustained inquiry 
Feedback/revision 
Student choice/agency 

Personally 
consequential 
Culturally responsive 
to community practices 
Investigations centered 
on student interests 



Isopod Habitat Challenge 



Isopod Habitat Challenge Study 
•  Research Question: How can findings from informal 

learning arrangements that highlight student choice and 
agency affect school programs for enhancing self-directed 
science inquiry? 

•  Participants 
–  13 5th grade teachers in a single district  
–  Schools were randomly assigned a treatment or comparison 

condition (multiple teachers in one school; comparison teachers 
implemented the traditional kit 

–  7 teachers, 122 students in treatment (IHC) group, 6 teachers, 72 
students in comparison classrooms 

•  Methods 
–  Used district content assessment that combined multiple-choice 

and short answer questions 
–  Embedded inquiry assessment  



Isopod Habitat Challenge Study 
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Traditional Inquiry IHC 

p < .0005  p < .05 

Choice and agency during inquiry were associated with-  

•  No differences on district-developed content assessment 
•  Students in the IHC classrooms had significantly higher 

rubric scores than students in comparison classrooms for 
the quality of their question posing and designs for a 
follow-up study to their investigations 



Micros and Me: Surfacing cultural health 
practices through self-documentation  



Micros and Me Study 
•  Research Question: How can we leverage youths’ 

repertoires of practice in the redesign of commercially-
available inquiry science kits 

•  Participants 
–  Design-based research (iterative cycles of revision) 
–  Single-group, pretest-postest design for analysis of outcomes 

(second iteration) 
–  Granite Elementary School: 63% Free or Reduced Price Lunch, 

40% ESL, significant cultural and linguistic diversity (e.g., 5% 
Caucasian students), large percentage of students from first 
generation immigrant families 

•  Methods 
–  Analyses of video recordings of classroom interactions 
–  Analyses of students’ self-documentation artifacts 
–  Co-design teachers’ reflections in interviews on their learning  



Micros and Me Study 

•  Compared with their scores on the researcher-developed assessment, 
students’ posttests were significantly higher for identifying 
manipulated and controlled variable in an experiment 

•  Teacher (does this mean it’s just one class of results) reported all 
parents mentioned during parent-teacher conferences how science 
curriculum topics were a focus of discussion at home and were shaping 
children’s everyday actions 

•  Teachers incorporated strategies of culturally responsive instruction 
into other grade levels and units; gained more complex notions of 
community and culture; put a priority on connecting science to 
students’ cultural lives 

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 

correctly identified 
manipulated variable 

correctly identified 
controlled variable 

pre-test 
post-test 



Type I Translation Research 
•  Team comprised of researchers from SRI and a graduate 

student from UW conducted implementation research on 
both units 

•  Research Question: How do teachers implement the 
curricula in the classroom? 

•  Methods 
–  Varied by project, given time of entry into involvement 
–  IHC: Classroom observations using both structured protocols and 

ethnographic fieldnotes, teacher interviews 
–  Micros and Me: Analysis of discourse from video recordings of 

teachers 



Type I Translation Research 
•  There is evidence from both redesigns that the new 

curriculum materials help teachers elicit student thinking 
and experiences 

•  Variability that makes a difference in terms of 
consequences for how classroom learning unfolds has to 
do with classroom uptake of student contributions 
–  In IHC classrooms, variability in teachers’ engaging in moves to 

help develop students’ questions mattered most 
–  In Micros and Me classrooms, variability in uptake of the 

meanings of “cultural” with respect to practices mattered most 

•  Primary implications of this Type I translation research: 
Identification of additional teacher learning supports 



Synergistic New Funding 

•  NSF DRK-12 grant: Exploring social learning 
principles in the context of curriculum redesign 
(Bransford, Vye, Bell, Shouse) 

•  US Department of Education i3 grants: 
–  Explore STEM project-based instruction throughout a 

high school (Shouse, Bell) 
–  Promote arts-based school improvement efforts across a 

district (Bransford, Vye) 

•  NSF Ocean Science Education Center: Renewed 
COSEE center will develop and study citizen 
science educational programs for minority youth 
(Bell, Tzou) 



Emerging Directions: Innovations that 
Span Multiple Settings 

Tribal leader Monica Charles talking with children about their role in habitat restoration 



Daniel Schwartz 
LIFE Center 

Models of Translation Research 



Not a translation theorist 
  But, even I know you 

have to show pictures 
of happy recipients in 
education!  

A Teachable Agent 



My Naïve Model of Translation 

  In many cases, it involves a chain of hand-offs 
among people with different expertise. 

  Scientist   Engineer   Designer  User 

  User  Designer  Engineer   Scientist 



Centers are unique 

  Given LIFE, the same people are often 
involved at all points of the chain. 

  Insider vantage might provide some insight 
on different types of translation. 

  In this example, we are translating basic 
research on “social facilitation.” 



“Basic Science” Examples 

  Social Beliefs and Complex Learning  
  Told character was a person or computer. 
  Learning science content. Identical interactions. 
  More learning/arousal/attention in social 
  Arousal predicts learning 
  Social “Interaction” is key 

  Evidence on the Neural Basis 
  Learning associations 
  Arousal predicts learning again 
  Hippocampus, amygdala, reward/feedback 
        circuitry implicated 

+ 

Sandra Okita 
Columbia 

Janice Chen 
Stanford 



Focus on One Instance of Translation:   
Teachable Agents (TA) 

Students learn by adopting and teaching  
a computer agent. 

Gautam Biswas 
(Vanderbilt) 



Teaching Your Agent 

1 
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? ? 



You asked me: if methane increases, what 
happens to heat radiation? 
I think that if methane increases, heat radiation 
decreases.  This is the path that I followed to 
get my answer.  Click explain to hear more. 

Understanding Your TA 

methane 

heat radiation 

? 

I think that if methane increases, heat 
radiation decreases. This is the path I 
followed to get my answer. 



Larger Environment 



Gameshow Used for Homework 

Your agent 
answers. 

You wager on 
how you think 
your agent will 
do. 

Host asks  
questions 



Different Models of Translating with 
Teachable Agents 

Translation 
Research 

Science of 
Context 

Specifying 
Effects 

Iterative 
Refinement 



Basic Science on Context 

  Many of the SLC’s focus on the internal world 
of the mind and brain. 
  Context is a way to probe the internal states. 
  Translation as a process of extending science 

findings thru increasingly complex contexts. 
  LIFE studies learning contexts per se. 

  It counts as part of our basic science portfolio. 
  In this model, translation research is basic research. 



Science of  
Context 

  Teach agent v. self. 
  50 8th-graders. 
  The context of beliefs 
  “Mere belief” manipulation. 

  Teach condition learns better. 
  Low achiever boost. 
  Follow-up research on why. 

  Students work harder to learn 
for their agent than themself. 
  Double the amount of time 

reading! 

Self 
Teach 

Cathy Chase 
Stanford 



Translation 
Research 

Science of 
Context 

Specifying 
Effects 

Iterative 
Refinement 

Different Models of Translating with 
Teachable Agents 



Specifying Effects of the Translation 

  Are the effects positive by standards of the 
stakeholders? 
  Precise learning outcomes. 
  Better than current standard? 



Comparative Study to Identify  
Precise Effects (~60 5th-graders) 

•  Kids made maps using 
Teachable Agent versus 
Inspiration 
•  Inspiration is a concept 

mapping tool used in very 
many schools. 

•  Topic: Global warming 
•  27 nodes,   31 links,             

3 feedback loops 
•  TA advantage specific to 

causal reasoning. 
Length of Causal Chain  

Needed to Answer Question 

Av
g.

 A
cc

ur
ac

y 



Specification of Effects 

  Are the effects positive by standards of the 
stakeholders? 
  Precise learning outcomes. 
  Better than current standard? 
  Side effects? 
  Lasting effects? 

  Bigger samples become important when 
looking for side effects and generalization. 



Do Teachable Agents provide  
added value without side effects? 

Cohort 1 

Cohort 2 

Using TA 

No TA 

~150 Children and 6 Teachers 
6th-grade science 

All teachers used the same science kits. (FOSS). 

Half of teachers also used TA’s as they wished.  

Same total time overall.  

Doris Chin 
Stanford 



TA did not “hurt” students based on science kit’s 
own test.  TA did improve causal reasoning. 

Kit + TA Kit Only 

What Why How Data 
Question Type 

Av
er

ag
e 

FO
SS

 It
em

 S
co

re
 (0

-1
) 



Are TA Learning Benefits Sustained? 

Cohort 1 

Cohort 2 

Using TA 

No TA C
R

O
SS

 O
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E
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Stop TA 

Start TA 



Benefits for Learning Causal Relations 
Persists when Technology is Gone. 

TA prepared kids for future learning. 

K
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Translation 
Research 

Science of 
Context 

Specifying 
Effects 

Iterative 
Refinement 

Different Models of Translating with 
Teachable Agents 



Iterative Refinement 

  Design-based research 
  Keep refining in the midst of an intervention. 
  User testing is not a bad analogy. 

  Experimental comparison of refinement/
extensions. 
  Taxonomy (4th-grade)/ Causality (5th-grade) 
  Reward v. No Reward 



Letting go of the baby clinical trial model so 
considerations of “scale” are involved early on. 
  Crowd sourcing is a new way to gather “human 

intelligence” data. 
  EteRNA 

  10,000 users play games that involve protein folding. 
  Their “gaming” drives scientific research   

  Kid-Sourcing Assessments of Learning 
  We are building infrastructure so that we and others can post 

assessments that target 21st century skills and others.  
  Ideally, very many children will want to play the “games” on-line. 
  We are developing methods for analyzing their in-game choices: 

  To determine effective and ineffective choice patterns for learning. 
  To refine assessments so they are maximally effective. 
  To improve learning while using the assessment. 



Translation 
Research 

Science of 
Context 

Specifying 
Effects 

Iterative 
Refinement 

Design-
Based 

Baby 
Clinical Trial 

Scaling from 
Start 

In sum:  Models of Translation Research 
Encountered so Far. 



Abstract	
  
Transla,onal	
  research	
  is	
  the	
  central	
  goal	
  of	
  the	
  Pi4sburgh	
  Science	
  of	
  Learning	
  Center	
  (PSLC).	
  	
  That	
  
goal	
  is	
  mo,vated,	
  on	
  one	
  hand,	
  by	
  the	
  low	
  rate	
  of	
  success	
  (<10%)	
  of	
  large-­‐scale	
  randomized	
  field	
  
trials	
  of	
  educa,onal	
  prac,ces	
  and,	
  on	
  other	
  hand,	
  by	
  the	
  lack	
  of	
  specificity,	
  and	
  corresponding	
  
lack	
  of	
  general	
  up-­‐take	
  in	
  educa,onal	
  prac,ce,	
  of	
  purported	
  general	
  principles	
  of	
  learning	
  coming	
  
from	
  basic	
  cogni,ve	
  science	
  research.	
  	
  We	
  have	
  facilitated	
  the	
  use	
  of	
  a	
  research	
  method	
  called	
  "in	
  
vivo	
  experimenta,on"	
  that	
  is	
  a	
  transla,onal	
  stepping	
  stone	
  between	
  laboratory	
  experiments,	
  
which	
  have	
  limited	
  ecological	
  and	
  external	
  validity,	
  and	
  randomized	
  field	
  trials,	
  which	
  have	
  
limited	
  internal	
  validity.	
  	
  At	
  the	
  same	
  ,me	
  we	
  are	
  suppor,ng	
  cumula,ve	
  development	
  of	
  theories	
  
of	
  domain-­‐general	
  learning	
  and	
  domain-­‐specific	
  knowledge.	
  	
  

A	
  key	
  reason	
  why	
  laboratory-­‐supported	
  principles	
  oNen	
  do	
  not	
  translate	
  reliably	
  to	
  the	
  classroom	
  
is	
  that	
  there	
  are	
  unrecognized	
  dependencies	
  between	
  the	
  to-­‐be-­‐learned	
  knowledge	
  and	
  the	
  
laboratory-­‐supported	
  principle.	
  	
  For	
  instance,	
  although	
  there	
  is	
  strong	
  lab	
  support	
  for	
  the	
  
"mul,media	
  principle"	
  (i.e.,	
  scien,fic	
  or	
  mechanical	
  processes	
  are	
  be4er	
  learned	
  from	
  a	
  
combina,on	
  of	
  text	
  and	
  diagrams	
  than	
  from	
  text	
  alone),	
  a	
  careful	
  applica,on	
  of	
  that	
  principle	
  in	
  a	
  
large-­‐scale	
  /in	
  vivo	
  /experiment	
  in	
  a	
  college	
  chemistry	
  course	
  produced	
  a	
  null	
  result.	
  	
  	
  A	
  follow-­‐up	
  
cogni,ve	
  task	
  analysis	
  yielded	
  a	
  detailed	
  theory	
  of	
  the	
  domain-­‐specific	
  knowledge	
  demands	
  in	
  
this	
  area	
  of	
  chemistry	
  and	
  applica,on	
  of	
  this	
  theory,	
  alone	
  and	
  in	
  combina,on	
  with	
  the	
  
mul,media	
  principle,	
  produced	
  reliably	
  be4er	
  learning.	
  	
  	
  Other	
  PSLC	
  research	
  has	
  also	
  
demonstrated	
  limita,ons	
  of	
  purported	
  general	
  principles	
  (e.g.,	
  self-­‐explana,on)	
  that	
  implicate	
  
knowledge	
  analysis	
  as	
  the	
  key	
  theore,cal	
  tool	
  needed	
  to	
  differen,ate	
  when	
  the	
  principle	
  will	
  
work	
  or	
  not.	
  	
  PSLC	
  has	
  developed	
  the	
  Knowledge-­‐Learning-­‐Instruc,on	
  (KLI)	
  framework	
  to	
  refine	
  
principles	
  of	
  learning	
  and	
  instruc,on	
  in	
  terms	
  of	
  theories	
  of	
  domain-­‐specific	
  knowledge.	
  	
  In	
  this	
  
session,	
  we	
  focus	
  par,cularly	
  on	
  the	
  role	
  of	
  knowledge	
  component	
  analysis	
  in	
  effec,ve	
  
instruc,onal	
  design	
  and,	
  more	
  generally,	
  in	
  suppor,ng	
  reliably	
  effec,ve	
  transla,onal	
  research	
  on	
  
learning.	
  	
  



In	
  vivo	
  experiments	
  and	
  	
  
cumula,ve	
  theory	
  	
  
as	
  keys	
  to	
  transla,on	
  	
  

Ken	
  Koedinger	
  
PI	
  of	
  Pi4sburgh	
  Science	
  of	
  Learning	
  Center	
  (PSLC)	
  
Professor	
  of	
  Human-­‐Computer	
  Interac,on	
  &	
  Psychology,	
  
Carnegie	
  Mellon	
  University	
  
Co-­‐founder	
  of	
  Carnegie	
  Learning,	
  Inc.	
  



PSLC:	
  Bridging	
  learning	
  science	
  
research	
  and	
  educa,onal	
  prac,ce	
  
•  Transla,onal	
  research	
  is	
  central	
  goal	
  	
  	
  
•  Mo,va,ons	
  

– Low	
  rate	
  of	
  success	
  (<10%)	
  of	
  large-­‐scale	
  
randomized	
  field	
  trials	
  of	
  educa,onal	
  prac,ces	
  

– Lack	
  of	
  specificity	
  of	
  purported	
  general	
  principles	
  
⇒ lack	
  of	
  general	
  up-­‐take	
  in	
  educa,onal	
  prac,ce	
  

⇒ 	
  Complexity	
  of	
  problem	
  warrants	
  center-­‐level	
  
efforts	
  	
  



In	
  vivo	
  experimenta,on	
  

•  Principle-­‐tes,ng	
  controlled	
  	
  
experiments	
  run	
  within	
  courses	
  

•  Bridge	
  between	
  lab	
  &	
  field	
  trials	
  
and	
  their	
  limita,ons	
  
– Lab	
  experiments:	
  Does	
  effect	
  generalize	
  to	
  real?	
  

– Randomized	
  field	
  trials:	
  What	
  is	
  it	
  that	
  works?	
  

Researchers	
  

Learn
Lab	
  

Schools	
  



Lab	
  results	
  don’t	
  simply	
  generalize	
  

•  Mayer’s	
  mul,media	
  principle	
  
–  “combine	
  graphical	
  presenta,ons	
  …	
  that	
  illustrate	
  key	
  
processes	
  and	
  concepts	
  with	
  verbal	
  descrip,ons	
  …”	
  	
  
(IES	
  Prac,ce	
  Guide)	
  

–  Lab	
  evidence:	
  89%	
  gain,	
  1.5	
  effect,	
  9	
  of	
  9	
  studies	
  	
  

•  Large-­‐scale	
  in	
  vivo	
  experiment	
  in	
  	
  
Chemistry	
  LearnLab	
  course	
  
–  N=1139	
  	
  	
  Null	
  effect	
  
–  No	
  evidence	
  that	
  combining	
  molecular-­‐	
  
level	
  diagrams	
  with	
  text	
  increases	
  	
  
learning	
  of	
  chemical	
  equilibrium	
  

Jodi	
  Davenport	
  (Psych)	
  ,	
  David	
  Yaron	
  (Chem),	
  	
  David	
  Klahr	
  (Psych),	
  Ken	
  Koedinger	
  (HCI,	
  Psych)	
  



Cumula,ve	
  Theory	
  Development	
  

Two	
  domains	
  of	
  relevant	
  theory	
  

•  Domain-­‐general	
  learning	
  principles 	
  	
  

•  Domain-­‐specific	
  knowledge	
  analysis	
  

Effec-ve	
  transla-on	
  requires	
  both	
  



Knowledge	
  Analysis	
  

•  Key	
  ques,on:	
  What	
  knowledge	
  components	
  
differen,ate	
  experts	
  &	
  novices?	
  
– Problem	
  representa-on	
  knowledge	
  
– Reasoning	
  strategy	
  knowledge	
  

•  Method:	
  	
  
Think-­‐aloud	
  studies	
  with	
  5	
  Chemistry	
  experts	
  
(professors)	
  &	
  9	
  novices	
  (advanced	
  students)	
  

Jodi	
  Davenport	
  (Psych)	
  ,	
  David	
  Yaron	
  (Chem),	
  Klahr	
  (Psych),	
  Koedinger	
  (HCI,	
  Psych),	
  Jim	
  Greeno	
  (Ed)	
  



Reasoning Step 
Considers progress of 
reaction to determine 
equilibrium 
concentrations. 

Deep features 
Applies K with 
equilibrium values. 

Experts	
  



Shallow Features 
Applies K expression with 
Non-Equilibrium values to 
solve for [C].  

Novice	
  



Experts	
  (E)	
  more	
  deeply	
  represent	
  &	
  
reason	
  than	
  novices	
  (N)	
  

Shallow encoding 
(initial values in 

formula) 

Deep encoding 
(equilibrium vals in 

formula) 

Reasoning 
(Approx K ≈ infinity) 

    Sub-optimal     Sophisticated 

5 N 

4 N 
3 E 2 E 

Jodi	
  Davenport	
  (Psych)	
  ,	
  David	
  Yaron	
  (Chem),	
  Klahr	
  (Psych),	
  Koedinger	
  (HCI,	
  Psych),	
  Jim	
  Greeno	
  (Ed)	
  



Redesign	
  instruc,on	
  based	
  on	
  
knowledge	
  analysis	
  	
  
•  Make	
  progress	
  of	
  
reac-on	
  more	
  explicitly	
  
,ed	
  to	
  formulas	
  &	
  
reasoning	
  

•  Redesign	
  led	
  to	
  ~2.5x	
  
improvement	
  in	
  
equilibrium	
  problem-­‐
solving	
  on	
  exam.	
  

Jodi	
  Davenport	
  (Psych)	
  ,	
  David	
  Yaron	
  (Chem),	
  Klahr	
  (Psych),	
  
Koedinger	
  (HCI,	
  Psych),	
  Jim	
  Greeno	
  (Ed)	
  



With	
  new	
  “progress	
  of	
  reac,on”	
  
diagrams,	
  further	
  posi,ve	
  effect	
  

Now,	
  mul,media	
  principle	
  works	
  
Effects	
  are	
  strongest	
  for	
  struggling	
  students	
  	
  



Cogni,ve	
  Science	
  principles	
  don’t	
  
simply	
  generalize	
  to	
  prac,ce	
  
•  From	
  lab	
  tasks	
  to	
  academic	
  content	
  

– A	
  cogni,ve	
  task	
  analysis	
  of	
  domain	
  knowledge	
  
may	
  be	
  required	
  

•  From	
  ini,al	
  domains	
  to	
  new	
  domains	
  
– Knowledge-­‐specific	
  constraints	
  may	
  limit	
  
generality	
  

⇒ Need	
  to	
  specify	
  dependencies	
  between	
  
general	
  principles	
  &	
  domain	
  knowledge	
  



Principles,	
  assistance	
  dilemma	
  

•  More	
  assistance	
  vs.	
  more	
  difficulty	
  
– Massed	
  vs.	
  distributed	
  (Pashler)	
  
–  Study	
  vs.	
  test	
  (Roediger)	
  
–  Examples	
  vs.	
  problem	
  solving	
  (Sweller)	
  
–  Direct	
  instruc-on	
  vs.	
  discovery	
  (Klahr)	
  
–  Re-­‐explain	
  vs.	
  ask	
  for	
  explana-on	
  (Chi)	
  
–  Immediate	
  vs.	
  delayed	
  (Anderson	
  vs.	
  Bjork)	
  
–  Concrete	
  vs.	
  abstract	
  (Pavio	
  vs.	
  Kaminski)	
  
–  …	
  

•  More	
  theory	
  &	
  data	
  is	
  needed!	
  



Huge	
  space	
  of	
  possible	
  instruc,onal	
  
op,ons	
  –	
  which	
  work	
  best?	
  

205,891,132,094,649	
  

315*2	
  



Evidence	
  
is	
  not	
  
strong	
  
enough	
  



Cogni,ve	
  science	
  principle:	
  	
  
Prompt	
  for	
  self-­‐explana,on	
  

Among	
  2	
  of	
  9	
  rec’s	
  with	
  “strong”	
  evidence	
  
•  Many	
  randomized	
  controlled	
  experiments	
  

in	
  lab	
  and	
  in	
  schools	
  
–  Aleven	
  &	
  Koedinger	
  (2002);	
  Beck,	
  McKeown,	
  et	
  al.	
  (1997);	
  Craig,	
  Sullins,	
  

et	
  al.	
  (2006);	
  Driscoll,	
  Craig,	
  et	
  al.	
  (2003);	
  Gholson	
  &	
  Craig	
  (2006);	
  King	
  
(1992;	
  1994);	
  Rosenshine,	
  Meister,	
  &	
  Chapman	
  (1996);	
  Wisher	
  &	
  
Graesser	
  (2007)	
  



PSLC:	
  In	
  vivo	
  studies	
  of	
  self-­‐
explana,on	
  promp,ng	
  
•  In	
  Physics,	
  Geometry,	
  Algebra,	
  English	
  courses	
  
•  LearnLab	
  course	
  commi4ee	
  support	
  

•  Scalable	
  solu-ons	
  



Generality	
  claim	
  

	
  “Self-­‐explana,on	
  is	
  a	
  domain	
  general	
  
construc,ve	
  ac,vity	
  that	
  engages	
  students	
  in	
  
ac,ve	
  learning	
  and	
  insures	
  that	
  learners	
  
a4end	
  to	
  the	
  material	
  in	
  a	
  meaningful	
  way	
  
while	
  effec,vely	
  monitoring	
  their	
  evolving	
  
understanding”	
  	
  	
  	
  (Roy	
  &	
  Chi,	
  2005)	
  



In	
  vivo	
  experiment	
  in	
  English	
  LearnLab	
  

•  Course	
  	
  
–  College-­‐level	
  English	
  as	
  a	
  Second	
  Language	
  
– Grammar	
  sec,on	
  of	
  levels	
  3,	
  4,	
  and	
  5	
  

•  Sewng:	
  Regular	
  class	
  mee,ng	
  in	
  computer	
  lab	
  
•  Assessments	
  &	
  incen,ves	
  	
  

–  Pre	
  &	
  post	
  embedded	
  in	
  computer-­‐based	
  ac,vity,	
  
downstream	
  exams	
  include	
  relevant	
  items	
  

–  Class	
  par,cipa,on	
  grade,	
  material	
  is	
  on	
  test,	
  	
  
students	
  want	
  to	
  proficient	
  in	
  English	
  

•  Target	
  content:	
  English	
  ar,cle	
  grammar	
  

Ruth	
  Wylie	
  (HCI)	
  ,	
  Teruko	
  Mitamura	
  (LTI),	
  	
  Ken	
  Koedinger	
  (HCI,	
  Psych)	
  



Prac,ce	
  only	
  

Ruth	
  Wylie	
  (HCI)	
  ,	
  Teruko	
  Mitamura	
  (LTI),	
  	
  Ken	
  Koedinger	
  (HCI,	
  Psych)	
  



Self-­‐Explana,on	
  (menu)	
  

22	
  Ruth	
  Wylie	
  (HCI)	
  ,	
  Teruko	
  Mitamura	
  (LTI),	
  	
  Ken	
  Koedinger	
  (HCI,	
  Psych)	
  



More	
  efficient	
  learning	
  from	
  prac,ce	
  
without	
  self-­‐explana,on	
  

p	
  =	
  0.01	
  

Learning	
  
Efficiency	
  

Ruth	
  Wylie	
  (HCI)	
  ,	
  Teruko	
  Mitamura	
  (LTI),	
  	
  Ken	
  Koedinger	
  (HCI,	
  Psych)	
   23	
  

-­‐0.8	
  

-­‐0.6	
  

-­‐0.4	
  

-­‐0.2	
  

0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

Prac,ce-­‐Only	
  

Self-­‐Explana,on	
  w/	
  
Prac,ce	
  

Analogy	
  w/	
  
Prac,ce	
  

Learning	
  Efficiency	
  =	
  
	
  z-­‐score(post-­‐pre)	
  	
  -­‐	
  	
  z-­‐score(learning-­‐,me)	
  



Knowledge-­‐Learning-­‐Instruc,on	
  (KLI)	
  
framework	
  
•  Refine	
  principles	
  of	
  learning	
  &	
  instruc,on	
  in	
  
terms	
  of	
  theories	
  of	
  knowledge	
  

•  Different	
  kinds	
  of	
  knowledge	
  	
  
=>	
  different	
  learning	
  processes	
  
=>	
  differences	
  in	
  op,mal	
  instruc,on	
  

Self-­‐explana,on	
  
hurts	
  

Self-­‐explana,on	
  
helps	
  

Unknown	
  



Keys	
  to	
  Transla,onal	
  Research	
  on	
  
Learning	
  &	
  Educa,on	
  
•  Method:	
  In	
  vivo	
  experiment	
  as	
  bridge	
  

– 150+	
  in	
  math,	
  science,	
  2nd	
  language	
  courses	
  

– New	
  IES	
  Math	
  Center	
  taking	
  to	
  next	
  step	
  
•  includes	
  two	
  former	
  PSLC	
  postdocs!	
  

•  Theory:	
  Domain-­‐specific	
  knowledge	
  analysis	
  to	
  
select	
  &	
  reference	
  domain-­‐general	
  principles	
  
of	
  learning	
  and	
  instruc,on	
  
– Get	
  KLI	
  framework	
  paper	
  at	
  learnlab.org	
  	
  



Next	
  two	
  talks:	
  	
  
More	
  PSLC	
  examples	
  of	
  transla,on	
  
Themes	
  
•  Adap,ng	
  general	
  learning	
  principles	
  to	
  specific	
  
academic	
  content	
  
– Knowledge	
  component	
  analysis	
  is	
  cri,cal	
  

•  In	
  vivo	
  experiments	
  to	
  test,	
  refine,	
  improve	
  



END	
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From Research to Practice: 
Interactive Examples and 
Diagrammatic Self-explanation in 
an Intelligent Tutoring System  
Vincent Aleven 
Human-Computer Interaction Institute 
Carnegie Mellon University 

Joint work with 

Alexander Renkl 
Department of Psychology 
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Freiburg, Germany 

Rolf Schwonke 
Department of Psychology 
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Freiburg, Germany 

Joint work with 

Ron Salden 
Madera Interactive Technologies Institute 
University of Madeira 

Kirsten Butcher 
Department of Educational Psychology 
University of Utah 
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Abstract 
 Intelligent tutoring systems have been proven to enhance students' mathematics 
learning in high schools and middle schools, compared to typical curricula without 
such software. These tutors support the learning of a complex cognitive skill through 
guided practice. A central component of each tutor is its cognitive model, which 
captures the detailed knowledge components (KCs) that make up the targeted 
cognitive skill. These models are a main form of knowledge componential analysis, 
which features centrally in the PSLC’s theoretical framework. 

Traditionally, tutors have used their cognitive models to implement a form of fine-
grained, individualized mastery learning. In this presentation, we review results 
from in vivo studies that demonstrate additional ways in which a model based on KC 
analysis can improve robust learning with a tutor. These studies tested instructional 
principles while at the same time aiming to improve the effectiveness of the 
Geometry Cognitive Tutor, a commercially-available intelligent tutoring system 
originally developed by our research group. One series of studies demonstrated the 
effectiveness of adaptive example fading based on KC modeling. The second showed 
that KC-specific prompts for diagrammatic self-explanations lead to more robust 
student learning.  

The research underlines the value of KC analysis for improving robust learning in 
real-world domains. The research is translational in the following ways: First, it uses 
as platform an intelligent tutoring system that has successfully made the transition 
from research to practice. Second, software features proven to be effective in this 
research have since been incorporated in commercially available versions of the 
tutor.  
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Introduction 
•  Prior talk: KC analysis is key in implementing 

instructional principles in real classrooms  

•  KC analysis facilitates implementation of  
–  Worked Examples Principle and 

–  Visual-Verbal Integration Principle 

•  Intelligent tutoring systems (ITSs): example of 
translational research based on KC analysis 

Algebra Cognitive Tutor Example 

Use graphs, graphics calculator 

Analyze real world  
problem scenarios 

Use table,  spreadsheet 

Use equations, 
symbolic calculator 

Tutor tracks  
knowledge growth 

Tutor provides just-in-time  
context-sensitive instruction 
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Cognitive Tutor Math Courses 
Making a Difference 

•  Real-world impact of Cognitive Tutors 
–  Disseminated by spin-off company, Carnegie Learning, Inc. 
–  500,000 students per year!  

•  Faclitate further translational research 
–  Cognitive Tutor classrooms are “LearnLabs” 
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•  Cognitive Model:  A system that can solve 
problems in the various ways students can 

•  Captures the KCs 

 Strategy 1:      IF the goal is to solve a(bx+c) = d 
     THEN rewrite this as  abx + ac = d 

 Strategy 2:  IF the goal is to solve a(bx+c) = d 
             THEN rewrite this as  bx + c = d/a 

 Misconception:  IF the goal is to solve a(bx+c) = d 
               THEN rewrite this as   abx + c = d 

Cognitive Tutor Technology: 
KC analysis key to individualizing instruction 

Book on ACT-R theory:  Anderson, J. R., & Lebière, C. (1998). The 
Atomic Components of Thought. Mahwah, NJ: Erlbaum. 
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Worked Examples Principle 

•  In contrast to the traditional approach of 
giving students a list of homework (or 
seatwork) problems to solve, students 
learn more efficiently and more robustly 
when more frequent study of worked 
examples is combined with problem 
solving practice. 
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Research questions 

•  Are examples effective in learning 
environments with tutoring? 

•  (How) can KC analysis help in devising a 
scheme for adaptively fading examples? 
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Ecological Control !  
Standard Cognitive Tutor 
Students solve problems step-
by-step & explain 

SLC Conference, Oct 2010                                                                                                           Interactive examples and diagrammatic self-explanation    10 

Worked-out steps with 
calculation shown by 
Tutor 

Treatment condition: 
Half of steps are given as 
examples 

Student still has 
to self explain 
worked out step 
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Fixed Fading: At the KC level 
Problem 
Solving 

Examples!

Problems! KC1! KC2! KC3! KC1! KC2! KC3!

P1! PS! Ex!
P2! PS! Ex!

P3! PS! Ex!
P4! PS! PS PS! Ex! Ex! Ex!
P5! PS! PS PS! PS! Ex! Ex 
P6! PS! PS PS! PS! PS! Ex!
P7! PS! PS PS! PS! PS! PS!
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Adaptive Fading 
•  Goal: individualized transition points from 

examples to problems 
•  Transition when student has a moderate 

ability to explain steps with the given KC 
•  KC analysis is key  

–  System tracks each student’s mastery of each KC 
–  When presenting a new problem, decides on the 

fly, which steps should be worked-out 
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Results 

•  Post-test & delayed post-test: 
Adaptive Fading condition 
showed better far transfer than 
the two control conditions 

Lab study (Freiburg) In vivo study (Pittsburgh) 

•  At the delayed post-test, 
Adaptive Fading condition 
showed better overall 
performance and transfer than 
the Problem condition  

•  Effect size: 0.4 SD 
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Translation into Practice 
(Widely-used Curriculum) 

Bridge to Algebra Geometry Cognitive Tutor 
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Visual-Verbal Integration 
Principle 
•  Instruction that includes both visual and verbal 

information leads to … robust learning … only 
when the instruction supports learners as they 
coordinate information from both sources and 
the representations guide student attention to 
deep features. 
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Research Questions 

•  Does  
– An interactive diagram that integrating 

visual and verbal information, and/or 
– Visual self-explanation of rule/diagram 

mapping  
 lead to more robust learning? 
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Control Condition: Separation of 
Visual/Verbal Information 

Students interact 
with tutor via the 
worksheet Diagram is 

static 
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Interactive diagram: all 
interaction (answers, 
feedback, hints) 
happens in the diagram 

Visual Verbal Integration(1): Interactive 
Diagram 
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Visual-Verbal Integration (2): 
Diagrammatic Self-Explanation 
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Results 
Visual-Verbal Integration 
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KC analysis helps 
•  Prompts Depend on KC 
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Translation into Practice 
(Widely-used Curriculum) 
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Conclusion 
•  KC analysis can facilitate implementation 

of instructional principles 
•  In novel and “translational” ways 

– Enhance student learning in actual 
classrooms 

– Transitioned into widely used curriculum 



David Klahr
Pittsburgh Science of Learning Center 

Department of Psychology

Program in Interdisciplinary Education Research (PIER)

Carnegie Mellon University

 Instructing & Assessing 
the 

Knowledge Components Comprising CVS

Classroom experiments with the 
TED Tutor: 

Training in Experimental Design CVS: Control of Variables Strategy

• A simple procedure for designing 
unconfounded experiments: 

- Vary one thing at a time (VOTAT).

• The conceptual basis for making valid 
inferences from data: 
                        - isolate causal path.

What is “CVS”? 

Why study CVS?
 Theoretical reasons (basic research):

• Surface vs deep mapping during analogical transfer of procedures and 
concepts at different transfer “distances”.
• Diagnosing and remediating misconceptions

Topic:            Core topic in early science instruction

 Assessment: State standards
  High stakes assessments
  NCLB is now testing science

Most effective instructional approach for teaching CVS?
Where to situate on the “direct instruction” vs “discovery” spectrum?
Heated controversy in profession
Legislative battles over science curriculum

Practical reasons (applied research):

Three instructional conditions

Aspect Direct  Socrat i c  Discovery 
Materia l s  Ramps, Springs, Sinking Objects  
Goal setting   By Experimenter: “can you find out whether X makes a difference in how far the ball rolls? ”  
Physical 
manipulation 
of materials 
by child  

Child assisted in taking down 
ramps after each set up by 
experimenter.  

Child set up ramps, rolled ball, and took down ramps from 
self-designed experiments.  

Design of 
each 
experiment  

By Experimenter: one “good” 
(unconfounded) and one “bad” 
(confounded) experiment for 
each variable under 
consideration  

By child: child designed experiment to determine effect of 
focal variable chosen by experimenter 

Probe 
question s  

Experimenter asked about whether experiment was “smart” 
or not, and whether (hypothetical) outcome of experiment 

would “let you know for sure” about causal variable.  

No probe question s  

Explanation s  Experimenter explained why an 
experiment was good or bad 
and how it could be corrected .  

No explanatio n  

 Summary Experimenter summarized CVS 
logic  

No summary 

Execution of 
experiment s  

None  By child 

Observation 
of outcomes  

None:  child only observed and 
discussed set up and a possible 

Child observed outcome of each experiment  

“Direct”            “Socratic”     “Discovery”

Yes Yes Yes

Teacher Student Student

Yes Yes No

Yes

Yes

No

No

No

Yes

No

No

Yes

Yes Yes

No

Teacher:

Materials:
    8 springs: 2 lengths x 2 widths x 2 wire sizes & 2 pair of weights

• Select two springs

• Select two weights  
• Hang springs on rack hooks 

• Hang weights on springs.

• Compare amount of  
stretching.

Example from early studies: 
Springs domain

 Which attributes determine how far a spring will stretch?

Execution:
         A                B
Length:   short long
Width:     wide wide
Wire:      thin  thin
Weight:   light light

An unconfounded test to determine whether 
spring length affects amount of stretching.

Springs

Length is “focal variable”



A

B

Surface: smooth
Run:   short
Steepness:  high
Ball:   golf

Surface:  rough
Run:   long
Steepness:  low
Ball:   rubber

An completely confounded test to determine 
whether ramp surface affects how far the ball rolls

Ramps

Surface is “focal variable”

Lessons learned about middle school 
children and experimental design

( Chen & Klahr, 1999; Toth, Klahr, 2009; Klahr, & Chen, 2000; Klahr, & Nigam, 2004;  
Matlen & Klahr, 2010; Li, Klahr, & Siler, 2006; Strand-Cary, & Klahr, 2008;)

Do children know how to design “good” experiments?  (CVS)
• No:  In “good schools”,  ~40% of  3rd & 4th graders’ simple 
experiments are unconfounded when they first encounter simple 
experimental design tasks.  In “not so good schools” only 15% 
unconfounded.

Can they be taught?
• Yes:  ~80% of 4th graders’ experiments unconfounded following brief 
session of explicit instruction with probes and feedback.

What’s a highly effective way to teach this topic?
• Explicit, focused instruction.

If CVS instruction:
• Is Explicit, Didactic

• Provides "good" and "bad" examples

•Asks focused probe questions  ("why is this  a 
'good'/'bad experiment?")

• And provides explicit answers, and explanations
Then:
• Students learn and transfer CVS knowledge:

•Assessed on near transfer (similar experimental set 
ups)

•Assessed on far transfer ("story" problems,  months & 
years later)

Consistent results from several studies Lessons learned (continued)
 Does learning CVS via “Direct Instruction” transfer to 

other materials, domains, & test formats?
• Yes:  immediate (new dimension), short term (different 
materials),  medium term (different materials, domains, & 
format),  far (science fair posters,  3 year delay).  

Do children have misconceptions about experimental 
design?

• Several!

Can they be diagnosed?
• Yes, by a very savvy teacher with lots of time per 
student.

Types of misconceptions about CVS
– Misconception about Goal of our instruction

• domain-specific knowledge, rather than domain-general 
procedure.

– Misconception about Goal of experimentation:  
• “engineering” approach.  Get a big result 

– Misconception about Meaning of “fair test”.
• “fair” = “same” , so set up ramps so that balls would roll 

the same distances, rather than trying to FIND OUT 
about a variable

– Students less willing to ignore prior knowledge, 
and to adopt hypothetical stance.

• So why bother to control for color of ball?

Lessons learned (continued)
 Does learning via “Direct Instruction” transfer to other materials, 

domains, & test formats?
• Yes:  immediate (new dimension), short term (different materials),  
medium term (different materials, domains, & format),  far (science fair 
posters,  3 year delay).  

Do children have misconceptions about experimental design?
• Several

Can they be diagnosed?
• Yes, by a very savvy teacher with lots of time per student.

Can children’s misconceptions about CVS be remediated?
• Yes, by a very savvy teacher with lots of time per student.

Are such science teachers easy to find?
• No

What to do?
• Create an intelligent tutor for teaching CVS.



Three basic steps for TED construction 
1. Determine core “knowledge elements” for 

expert performance

2. Diagnose current student knowledge

• Correct

• Incorrect

3. Provide focused remedial tutoring

TED Tutor: 
Training in Experimental Design
w/ Stephanie Siler, Cressida Magaro, Kevin Willows

7

Core “knowledge elements” for CVS

In a multi-variable situation, if your goal is to determine whether 
or not a variable plays a causal role in outcome A, then
 
Rule 1: Identify that variable (X) and its values: 

Rule 2: Create a contrast:
  a. In Condition 1, Set X to Value 1
  b. In Condition 2, Set X to Value 2

Rule 3: Set all other variables (Y, Z, W) to the same values in 
both conditions.

“Run” the experiment:
•  measure A1 and A2.
•  If A1! A2, then X is causal.

Hard:  variable - variable

Two empirical studies
• Study 1: 

• How good is a non-adaptive computer TED, 
presenting “direct instruction”? 
• Compare to science teacher using same 

materials but via class lecture.

• Study 2:  
• How does non-adaptive TED compare to a good 

teacher-delivered lesson, using “rich” hands-on 
materials. (Pittsburgh Public School curriculum)
! Taken from Foundations of Physical Science textbook 

(Cambridge Physics Outlet - CPO) .

Structure of our assessment studies

“Story pre”   “Ramps Pre”   Instruction  “Ramps post”  “Story post”

Story 
Pretest 
(design)

Ramps 
Pretest

Explicit 
Instruction

Ramps 
Posttest

Story 
Posttest 
(design)

Story 
Pretest 
(eval)

Ramps 
Pretest

Explicit 
Instruction

Ramps 
Posttest

Story 
Posttest 

(eval)



Story 
Pretest

Ramps 
Pretest

Explicit 
Instruction

Ramps 
Posttest

Story 
Posttest

Story 
Pretest

Ramps 
Pretest

Explicit 
Instruction

Ramps 
Posttest

Story 
Posttest

Story 
Pretest

Ramps 
Pretest

Explicit 
Instruction

Ramps 
Posttest

Story 
Posttest Study 1: TED (non-adaptive) instruction vs. 

Human instruction on CVS

Max = 4

Students in both conditions showed significant gains in CVS knowledge.
No difference in condition.
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• In vivo, Pittsburgh Sci Tech Academy

• Two eighth grade classes (N = 29) (70% reduced lunch 

eligible)

• Design: 
" TED (non-adaptive) (n = 14) vs. Human Science Teacher: (n = 15) 

between-subjects quasi-experimental: 
" 4th-period = teacher presentation, student gps design and run 

experiments, class discussion of outcomes
" 5th-period = TED: individual students using TED interface.
" Student quality confounded: weaker students in TED condition.

13

Study 2:  Non-Adaptive TED vs Good Science Teacher 

        Physical                               Virtual

Live teacher & “cool” 
physical Materials                                      

Teacher-led (CVS logic) Video (compare/contrast 
outcomes)

Setting up/running 
experiment/record results

No Yes (consider CVS Logic)

Ramps 
Materials

Lesson Intro

Main activity Evaluating experiments 
only

IndividualProbes  
during activity?

YesGroup 
activity?

No

Summary Teacher-led; CVS logic Video; CVS summary

Final activity Re-run experiments & 
discuss results

Ramps “post-test” (no 
feedback)

No YesCVS 
explanations?

    Experimental Conditions
TED-1: virtual 

instruction                                      



16

“Story Problem” Post-Test Scores:
TED tutor vs. Teacher 

(P values after ANCOVA: Factoring out 
student “general ability”)

Efficiency: 
• Human teacher  ~100 min
• TED  ~60 min

p < .05

p < .05
CPO
TED

p < .001

(max = 6) 1. Experimental design is a fundamental domain-general 
topic in early science instruction.

2. Children have a variety of implicit notions (“pre-
conceptions) of what experimentation is about

• Often incorrect

• Can be assessed by carefully designed probes

• Can be remediated by a good  (human) tutor

3. Creation of an adaptive instructional system capable of 
“good tutoring” is feasible, and has thus far been successful.

Summary 



Supporting Early STEM Learning
with Spatial Analogy and

Language

Dedre Gentner

Susan Goldin-Meadow
Susan Levine

Nora Newcombe
David Uttal



Supporting spatial learning and STEM
achievement: from lab to world

Spatial language

Spatial analogy

Combining spatial language and spatial
analogy to promote learning



Knowledge of specific spatial terms predicts
performance on spatial tasks

(Dessalegn & Landau, 2008; Haun et al., 2006; Hermer-Vazquez et al., 1999, 2001;
Loewenstein & Gentner, 2005)

Spatial language is important in spatial
learning

e.g., Block Task

Early production of spatial language (14-46 mo)

predicts later performance on spatial tasks (54 mo)

(Pruden, Levine & Huttenlocher, under review; Levine et al., under review)



Knowledge of specific spatial terms predicts
performance on spatial tasks

(Dessalegn & Landau, 2008; Haun et al., 2006; Hermer-Vazquez et al., 1999, 2001;
Loewenstein & Gentner, 2005)

Spatial language is important in spatial
learning

e.g., Block Task

Early production of spatial language (14-46 mo)

predicts later performance on spatial tasks (54 mo)

(Pruden, Levine & Huttenlocher, under review; Levine et al.,under review)

But is this a causal relation?



• The midpoint relation is important in STEM disciplines

• Balance, bisection, half

• Proportion, scale

• The midpoint relation is a complex spatial relation
• Requires locating a figure relative to two reference objects

• Non-human animals have

difficulty encoding the midpoint
• gerbils (Collett, Cartwright, & Smith, 1984)

Spatial language and spatial cognition: The
midpoint relation

Training

Test



• The midpoint relation is important in STEM disciplines

• Balance, bisection, half

• Proportion, scale

• The midpoint relation is a complex spatial relation
• Requires locating a figure relative to two reference objects

• Non-human animals have

difficulty encoding the midpoint
• gerbils (Collett, Cartwright, & Smith, 1984)

• 4-5-year-old humans can succeed
(Uttal, Sandstrom & Newcombe)

Spatial language and spatial cognition: The
midpoint relation

Training

Test

Does spatial language help children grasp the midpoint relation?



2 ½- to 5-year-olds

Midpoint task
(with Nina Simms)

Training
C watches E hide TC

Test
E hides TC while C’s eyes closed



Results:

• Many mistakes among younger children

• Children who did well on the Midpoint Task also did well on a
post-test of spatial language—specifically, middle and between

But is there a causal link from using middle to facility with the
midpoint relation?

Study 2: Vary whether children hear middle during the Midpoint
Task

Middle and the Midpoint Task
Simms & Gentner, 2008, in prep.



Study 2 (ongoing): Vary whether children hear spatial
language (middle) or not during first 4 trials of
Midpoint Task

Does spatial language help children
grasp the midpoint relation?
progress)

1st half of
Midpoint
Task

Removed
for 2nd
half

Label:
“The treasure chest is in the middle
of the two flags”

No Label
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Study 2 (ongoing) – Hearing the term middle
improves performance on the Midpoint Task

During Manipulation
3½-year-olds do better
if they hear the term
middle on each trial

No effect for maps

After Manipulation
This advantage
appears to persist
after the term is no
longer used
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Supporting spatial learning

Spatial language

Naming spatial concepts and relations promotes
comparing and categorizing across exemplars

and helps learners preserve and transfer spatial
concepts

Spatial analogy

Combing spatial language and spatial analogy



Jee et al., 2009; Kastens & Rivet, 2010; Sibley, 2009

Inference

Analogy fosters STEM learning:
Importing spatial knowledge from familiar to
unfamiliar domains

MANTLE
hotter

lower density
RISES

OIL
hotter

lower density
RISES



Analogy fosters STEM learning:
Abstracting common spatial systems from
two different domains

BELOW

heats up
expands

lower density
RISES

ABOVE
cools

contracts
higher density

SINKS



• Teach 3- and 4-year-olds novel spatial relational
configurations

• Test whether spatial alignment can promote
attention to common spatial relations

Spatial analogy supports learning spatial
concepts, even in very young children

(Christie & Gentner, 2010)

Standard

“This is a dax”



Learning spatial concepts

Standard

“This is a dax”

Relational match Object match

“Which one of these is
also a dax?”

Word-learning task

(Christie & Gentner, Journal
of Cognitive Development
2010)



Learning spatial concepts

Standard

“This is a dax”

Relational match Object match

“Which one of these is
also a dax?”

Word-learning task

(Christie & Gentner, Journal
of Cognitive Development
2010)

3-year olds:
98% object match



Comparison promotes learning spatial concepts

Comparison condition

“This is a dax”

“Can you see why
they’re both daxes?”

“And this is also a dax”
Standard 1

Standard 2

Standard

“This is a dax”

Relational match Object match

“Which one of these is
also a dax?”

Solo condition



Comparison condition

“This is a dax”

“Can you see why
they’re both daxes?”

“And this is also a dax”
Standard 1

Standard 2

Standard

“This is a dax”

Solo condition

Solo
Comparison

3;10 years 4;8 years
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Comparison promotes learning spatial concepts



• Second study found that sequential presentation was no

better than solo presentation (Christie & Gentner, 2010)

• Comparison—structural alignment—is the essential

ingredient. Just having two exemplars is not enough

Comparison is the key

This is a dax

And this is a dax

Which one of
these is a dax?



From lab to museum: Using comparison to help
children learn a basic engineering principle

Research at the Chicago Children’s Museum
(Gentner, Levine, Dhillon, & Poltermann, 2009; in preparation)

Child builds a skyscraper with family

Free-form construction

Children often fail



From lab to museum: Using comparison to help
children learn a basic engineering principle

Research at the Chicago Children’s Museum
(Gentner, Levine, Dhillon, & Poltermann, 2009; in preparation)

Child builds a skyscraper with family

Free-form construction

Children often fail

Our goal: Teach children

that triangles/diagonals

confer stability

Diagonal
Brace



Using spatial analogy to teach about engineering

Three groups:
• High-alignable comparison
• Low-alignable comparison
• No training

2-minute training task

(Gentner, Levine, Dhillon, & Poltermann, 2009)



High
Alignability

“Which one do you think
is stronger?”

[Child guesses]

“OK, now see if you can
wiggle them”

[The building with the
diagonal does not bend.]

“Now which do you think
is stronger?

Yes, this one is strong! It
doesn’t wobble because

it is stable”. ”

Low
Alignability

Training



• After training, children construct skyscraper with family

• Then they get repair task:

“This building is wobbly. Can you show me where to
put this piece to make it strong?”

Result: Spatial alignment helps children learn
about bracing—a key elementary engineering
principle

Age: 5 Age: 5;6 – 7;4 (M = 6;5);6 – 7;4 (M = 6;5)



• After training, children construct skyscraper with family

• Then they get repair task:

“This building is wobbly. Can you show me where to
put this piece to make it strong?”

Result: Spatial alignment helps children learn
about bracing—a key elementary engineering
principle

6 7 8
(n) (44) (44) (31)

Age

Proportion diagonals on repair task



Lab Study: Combining spatial language with
spatial alignment to facilitate transfer
(with Micah Goldwater)

Phase 1: Replicate Children’s Museum Study
High Alignability vs. Low Alignability
Repair task
Result: High align > Low align

Phase 2: Label
Language (Brace) vs. Control

Phase 3: Transfer to Novel Structures

Overall Design: 2x2
Alignability (High vs. Low)
Language (Label vs. Control)

Age: 5;6 – 7;4 (M = 6;5)



Transfer Test: “Which one is stronger?”

100% of children given High Alignment + Spatial Relational
Language succeed!

Spatial language combines with spatial
alignment to foster transfer

Proportion correct choices

High Alignment Low Alignment
(n = 32) (n = 32)

Age: 5;6 – 7;4



Museum of Science and Industry: Bridge-building

• 4th through 6th grade classes

• Instructional lab on building stable bridges

• Pre-test Instruction Post-test

Preliminary results:

• High-alignment group is better at transfer to other structures

• Low SES group especially benefits from highly alignable
examples

(Applebaum, Spaepen, Gentner, Levine, & Goldin-Meadow)

High-alignment pairs
or Low-alignment pairs



Further projects

Ongoing: Combining spatial language and
spatial analogy together to accelerate learning

e.g., graphing stock & flow systems

Teaching measurement in Chicago schools

(Levine, Goldin-Meadow & colleagues)

1 2 3 4 5 6 7

1 2 3 4 5 6 7



Summary: Two tools of spatial learning

Spatial analogy is important in spatial learning

• Invites new inferences

• Highlights and abstracts key spatial structures

• Reveals alignable differences

Spatial language is important in spatial learning

• Common spatial language invites comparison

• which fosters abstraction of spatial structures

• Spatial language preserves spatial abstractions and
makes them more portable



• Spatial analogy promotes

• highlighting and abstraction of common spatial

system

• So spatial relational structure becomes

• more explicit

• less contextually embedded

• more portable in transfer to new contexts

• These processes promote learning at all

stages of development using spatial

language

Analogy fosters spatial learning:
Abstracting spatial principles



Sketch Understanding: From
laboratory to classroom and back

Kenneth D. Forbus

Northwestern University



Computer tutors and learning environments
need spatial capabilities

• Intelligent tutoring systems are providing valuable
benefits in some STEM areas

• But not in spatially rich subjects (e.g. geoscience,
engineering)

– Modeling human visual, spatial, & conceptual
understanding involves hard scientific questions

• Sketch understanding software could change this

Ultimate goal:
Software that

understands sketches
as you would

Requires Center-level
cross-discipline effort



CogSketch Research Goals
• Goal: A cognitive science research

instrument.

– A computational model of spatial reasoning and
learning

– A tool for gathering data in laboratory and
classroom studies

• Goal: A platform for sketch-based intelligent
educational software

– Worksheet model

– Helping students learn engineering design

• Vision: Sketch understanding software to
help students learn could be widely
available within 6 years



Some CogSketch Simulation Examples

Best Generalization IN
Size: 3

(candle in bottle, cookie in bowl, marble in water)
--DEFINITE FACTS:

(rcc8-TPP figure ground)
--POSSIBLE FACTS:
33% (Basin ground)

33% (Bowl-Generic ground)

Learning spatial prepositions

English & Dutch,
with orders of

magnitude less data
than previous models

Captures relative difficulty, ∆s between  
Americans and Munduruku

Made
reaction time

prediction
subsequently
confirmed via

behavioral
experiment



Examples of CogSketch lab experiments

Causal/cycle diagram Geo student sketch Novice sketch

Jee, et al. Drawing on Experience: Use of sketching to evaluate knowledge
of spatial scientific concepts (CogSci 2009)

Glazek & Shipley, Temple U. Smith & Gentner, Northwestern U



Examples of CogSketch lab experiments

Causal/cycle diagram Geo student sketch Novice sketch

Jee, et al. Drawing on Experience: Use of sketching to evaluate knowledge
of spatial scientific concepts (CogSci 2009)

Glazek & Shipley, Temple U. Smith & Gentner, Northwestern U



CogSketch Education Projects

• Problem: Students must
understand spatial layouts and
terminology

• Sketch worksheets scaffold and
assess students in sketching
exercises

• Lead student: Maria Chang

Worksheets Design Buddy

• Problem: Students have trouble
using sketches to communicate
their ideas

• Design Buddy provides feedback
on student explanations

• Lead student: Jon Wetzel



Motivation for Sketch Worksheets

Paper-based worksheets are a staple in many
classrooms.

• Sketching is a valuable way of learning spatial relationships.

• Feedback on pencil and paper worksheets is delayed.

• Grading paper-based worksheets is time-consuming.



Sketch Worksheets: Example

Provides task
for students

Fault worksheet
from Sageman’s

class



Sketch Worksheets: Example

Student
sketches

their answers



Sketch Worksheets: Example

Student gets
feedback on

demand



Worksheet Authoring Environment

• Create problem statement

• Draw solution sketch

– CogSketch automatically generates facts

• Select subset of concepts student will see

• Add coaching advice for important facts



Coaching via Analogy
• Sketches are compared via the Structure-Mapping

Engine (SME) to generate coaching advice

– Candidate inferences of the mapping provide
differences

Teacher’s sketch Student’s sketch



Grading Environment built into CogSketch
• CogSketch generates

detailed analyses of
student performance for
grading

• Rubrics specified in
authoring environment



Worksheet Classroom Pilot Study

• Brad Sageman’s
Geo 201: Surface
Processes, Fall
2009
– 3 fault worksheets +

ordering

– Carbon Cycle

• Students used sketch
worksheets successfully

• Students improved on
using sketch worksheets
through practice

• Carbon cycle worksheet
indicated that the
annotation instructions
needed to be improved

Yin et al IAAI 2010



• Expand participating geoscience classes at NU

• New connected set of worksheets being designed

– Collaboration with Basil Tikoff, U. Wisconsin

– Goal: Teach college geoscience students about how
arrows are used, building on Jennifer Cromley’s work

• Explore worksheets for middle school & high
school assessment

– Collaboration with Louis Gomez, U. Pittsburgh

• Opportunity: Incorporate knowledge tracing into
CogSketch, using a pool of worksheets

– Use results from laboratory and classroom studies to
drive more advanced sketch-based tutoring

Worksheet Plans



Design Buddy: Setting and Problem

Engineering Design and Communication Course
at Northwestern University

Problem:
Students have trouble using
sketches to communicate



Design Buddy Finds Problems in Explanations



Design Buddy Finds Problems in Explanations



Wetzel & Forbus, QR 2010

Pull-out studies with EDC students

• 15 minute tutorial

• Using Design Buddy to
– Explain how a fountain pen

works

– Explain how their current
design project worked

• Students were able to
use Design Buddy
– It mostly understood their

explanations

– Students improved their
explanations through
multiple feedback cycles

• Mean: 5.5, min 3, max 8

Initial

Final



Next Design Buddy Experiment

• First in-class experiment

– Explain their class design project

• Instructors will grade sketched explanation

– Evaluate the explanation created by another student

• Data to be collected

– CogSketch: Timing data, explanation problems
detected, student repairs.

– Instructor feedback on quality of explanation

• Goal: quantitative explanation quality metrics

– Student feedback on Design Buddy

• Pilot in Fall, run in multiple sections in Winter,
Spring



Basic research motivated by translation

• Extend CogSketch with robust 3D
reasoning & perception
– Forces and surfaces

– Non-rigid materials

• Expand visual/spatial routines
processor
– Model individual differences

– Develop authoring environment



CogSketch: We want users!

• Psychologists: Time-stamped ink data often
easier to analyze than video

• AI scientists: Message-passing API, to use as
component with other software

– Open-source in a year, in addition to regular binary releases

• Technical support provided for next 1-6 years



CogSketch Team + Collaborators

• CogSketch Developers
– Ken Forbus

– Jeff Usher

– Andrew Lovett

– Jon Wetzel

– Maria Chang

• Weekly Contributors
– Micah Goldwater (postdoc)

• Geoscience Collaborators
– Brad Sageman (NU)

– Basil Tikoff (Wisconsin)

• EDC Collaborators (NU)
– Bruce Ankenman

– John Anderson

– Stacy Benjamin

• Psychology & Education
Research Collaborators
– Steve Franconeri (NU)

– Dedre Gentner (NU)

– Louis Gomez (Pitt)

– Susan Levine (U Chicago)

– Nora Newcombe (Temple U)

– Terry Regier (U Chicago)

– Tim Shipley (Temple U)

– David Uttal (NU)

http://www.spatiallearning.org



Translation in the Science of Learning Centers 

Brief Introductory Comments 

Broad meanings of “translation” and “translation research” 
reflected in the presentations 

 Learning research and education research: overlap and 
differences reflected in the presentations 

 A useful framework based on focusing on improvements in 
education as a  complex system  

   (Maroulis et al. Science Oct. 1st, 2010) 

  “mechanism based”   (micro-level) 
  “effects based”   (macro-level) 



 Translational Work at CELEST and LIFE  

CELEST 

  * Heather Ames Versace: The applied neuroscience of learning 

  * Jonathan Brumberg: Brain-computer interfaces for 
communication 

  * Massimiliano Versace: Brain-inspired computing 

LIFE  

  * Roy Pea: Augmenting educational designs with social 
learning 

  * Bill Penuel: Curriculum design studies focused on leveraging 
personal relevance and social practices in elementary science 

  * Dan Schwartz: Different models of the relation between 
research and translation 



  Translational Work at PSLC and SILC  

  PSLC: 
   * Ken Koedinger: In vivo experiments and cumulative theory as 

keys to translation  
   * Vincent Aleven: From research to practice – Interactive 

examples and diagrammatic self-explanation in an intelligent 
tutoring system 

   * David Klahr: Classroom experiments with TED, the Tutor for 
Experimental Design 

 SILC: 
  * Nora Newcombe: SILC's strategy for supporting STEM 

education through spatial  learning 
  * Dedre Gentner: Supporting early STEM learning with spatial 

analogy and language 
  * Ken Forbus: Translating sketch understanding from 

laboratories to classrooms, and back again 



Translational Work at TDLC and VL2  

TDLC: 
 * Gary Cottrell (UCSD): Overview of at TDLC 

 * Terri Jernigan (UCSD): A neurodevelopmental case for 
personalizing education 

 * Sean Kang (UCSD) : Distributed practice over the long-term: 
Should spacing be expanding or equal interval? 

VL2: 
 * Thomas Allen (Gallaudet) : Overview of translation at VL2 

 * Donna Morere (Gallaudet) : Identifying factors influencing 
early literacy for deaf students through longitudinal study of 
student, family, and school characteristics 



Closing Comments 

Where is the research focused? 

 What lies behind considerations of  “Fidelity”  and “Adaptation” 
     Fidelity to the design 
     Adaptation to the environment 

A key challenge facing education research is to integrate insights about  

“micro‐level” mechanisms with evidence about aggregate, “macro‐level” 

outcomes that emerge from processes of implementing those 

mechanisms. 



On a personal note,  from translation research to 
implementation research 

Looking at education as an integrated complex system whose 
outcome is learning: 

Where is the missing research? 

   “Adaptation” to an environment (i.e. learning within organizations) 

    
 ¨Sustainability” of improved environments (i.e. learning by the 
educational organization) 



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

TDLC Translational Research

Overview



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Our overall goal:
Translating Basic Science into “Best Practices” in Education

Synapses

Circuits/
Systems

Computational
Strategies

Behavior

Learning
In The

Classroom

• Improving face recognition, emotion
recognition, and cultural differences within
these domains to impact teacher/student
interactions.

• Perceptive robot systems for teaching and
intervention.

• A set of teaching tools that promote
rapid learning, superior retention,
and flexibility of information use,
based on learning principles of the brain.

• Improved intervention for children
struggling with English language
and reading skills.



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Multiple approaches to translation

• Traditional: Lab -> Classroom
(FFW+PTR)

• Traditional++: Use modeling -> optimize
spacing

• Inreach: Classroom -> Lab (gamelan)

• Interactive: (RUBI, LFI!)
– Lab->Classroom->Lab->Classroom->Lab…

• Serendipity: Encourage basic research that
we hope will lead to translation



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Multiple approaches to translation

• Traditional: Lab -> Classroom
(FFW+PTR)

• Traditional++: Use modeling -> optimize
spacing

• Inreach: Classroom -> Lab (gamelan)

• Interactive: (RUBI, LFI!)
– Lab->Classroom->Lab->Classroom->Lab…

• Serendipity: Encourage basic research that
we hope will lead to translation



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

“Traditional” translation (Lab-> Classroom):
Leveraging our partnership with Scientific Learning

Corp.

• Fast ForWord tries to remediate dyslexia by
speeding the temporal processing of the
auditory system.

• Faster temporal processing ->

• Better phonological representations ->

• Better targets for phonics ->

• Better reading



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

“Traditional” translation (Lab-> Classroom):
Leveraging our partnership with SLC

• Path To Reading tries to remediate dyslexia
by speeding the temporal processing of the
visual system (magnocellular, or motion
pathway).

• Faster temporal processing ->

• Better onset/offset signals to the shape
(parvocellular) system during eye
movements -> Better reading



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

“Traditional” translation (Lab-> Classroom):

• Interactions between Visual and Auditory
Interventions in Reading (collaboration between Cottrell (UCSD),

Lawton (Perception Dynamics Institute) and Jenkins (Scientific Learning)
(Funded in 2010 by IES $2.3M)

• Scientific question: will speeding up timing in the
visual system and the auditory system have a
synergistic effect, giving superadditive results?

No FFW FFW (auditory training)

No PTR

Control Groups:
(1) Business As Usual;
(2) Hawthorne effect control:
Orientation Discrimination Training

FFW only group

PTR (visual training) PTR only group Combined FFW & PTR group



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Multiple approaches to translation

• Traditional: Lab -> Classroom
(FFW+PTR)

• Traditional++: Use modeling ->
optimize spacing

• Inreach: Classroom -> Lab (gamelan)

• Interactive: (RUBI, LFI!)
– Lab->Classroom->Lab->Classroom->Lab…

• Serendipity: Encourage basic research that
we hope will lead to translation



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Translation++:
Using modeling to optimize learning
• Mike Mozer is a modeling God.

Mike

Cognitive phenomena
to be modeled



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

The data: Forgetting curves by retention
interval versus spacing of study episodes

Cepeda, Vul, Rohrer, Wixted, & Pashler (2008)

(collected via a web-based experiment)

Note the optimal spacing depends on when you want to remember the items…



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Multiscale Context Model

Search of
Associative Memory

Multiple Time Scale Model
(Staddon, Chelaru, & Higa, 2002)

(Raaijmakers, 2003)

contextual
drift

multiscale
representation



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Mozer’s model predicts the data
(solid lines)

based on fits to a forgetting curve from separate data



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Using the model to optimize retention

• Working backwards from the model, Pashler &
Mozer have now developed a web-based training
system for Boulder students learning second
language vocabulary.

• The model schedules items for learning episodes to
optimize retention on the Final Exam

• Now making it an iPhone app…

Psychology meets Computational Modeling meets
Education!



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Multiple approaches to translation

• Traditional: Lab -> Classroom
(FFW+PTR)

• Traditional++: Use modeling -> optimize
spacing

• Inreach: Classroom -> Lab (gamelan)

• Interactive: (RUBI, LFI!)
– Lab->Classroom->Lab->Classroom->Lab…

• Serendipity: Encourage basic research that
we hope will lead to translation



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

The Gamelan Project:
Synchronicity: Social learning, temporal

perception, and music
(Chiba (UCSD), Reilly (SDSU), Makeig (UCSD), Minces (UCSD) Tallal (Rutgers) Alex Khalil

(Museum School))

• Balinese Gamelan, of all the world’s
musical styles, values ensembleensemble
synchronysynchrony most highly.

• In teaching this music to elementary
school children, Ethnomusicologist Dr.
Alex Kahlil observed that an inability to
synchronize in an ensemble seems to
correlate with the presence of ADHD.

• He came to Andrea to see if this could be
tested: Inreach!



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

The Gamelan Project

QuickTime™ and a
decompressor

are needed to see this picture.

• Goal: Use high tech gamels (hammers) and
computational analysis to assess the hypothesis.

• Use EEG markers of attention to correlate with
performance on this task.

• Investigate whether musical training can
ameliorate attentional and academic
performance - and normalize the EEG markers.



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Inreach: Classroom->Lab

High tech “gamelan” instruments using piezoelectric sensors…
Data analyzed using neural spike coherence techniques

Early results show a negative correlation with attentional measures



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

The Gamelan Project

• As part of this project, low SES, diverse
children from the Hoover schools in San Diego
will:

– Receive free music training

– Come to UCSD for assessments

– Be exposed to TDLC research: MoCap/Brain
Dynamics, Robots, CERT…

• The project will thus combine diversity,
outreach, education, and research - and it was
the result of inreach!



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Multiple approaches to translation

• Traditional: Lab -> Classroom (spacing)

• Traditional++: Use modeling -> optimize
spacing

• Inreach: Classroom -> Lab (gamelan)

• Interactive: (RUBI, LFI!)
– Lab->Classroom->Lab->Classroom->Lab…

• Serendipity: Encourage basic research that
we hope will lead to translation



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Interactive Translation

• Try things out before the basic science is
done!

• See what works and what doesn’t

• Refine, retry (The Scandinavian Approach to
Design)

• RUBI started out in Javier’s garage, scaring
his son.

• When his son liked how she looked, she was
ready for the classroom.



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Interactive Translation
• But the six-degree of freedom multi-joint

arms that Javier’s team was so proud of
scared the teachers!

• So she became a BSA (Birmingham Small
Arms) Robot…



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Interactive Translation
• But the kids would pull her arms off!

• So they had to make RUBI cry when her
arms were pulled on…

• They started with Wizard of Oz simulations
(man behind the curtain)

• Now RUBI is a completely
autonomous low-cost social
robot that can be deployed
in an early childhood day
care setting.



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Interactive Translation

• 10 day immersion with RUBI 10% improvement in word

learning



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Interactive Translation:
RUBI crying for attention

QuickTime™ and a
decompressor

are needed to see this picture.



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Interactive Translation:
RUBI crying for attention

• It is this social aspect of RUBI that makes
her a useful teaching tool - the children
interact with her as if she were another child.

• As Pat discussed, she is an excellent
vocabulary teacher, can teach colors and
shapes according to the California standards
for preschoolers…

• And the teachers like RUBI - even though
she can’t join the union…



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Multiple approaches to translation

• Serendipity: Encourage basic
research that we hope will lead to
translation

• We’ll just have to wait and see…



Temporal Dynamics of Learning Center Translational Research Overview
QuickTime™ and a

decompressor
are needed to see this picture.

Summary

• I described a subset of our translation
projects…

• We have a variety of approaches to
translation - all based on sound science, all
having timing as a central aspect.

• We will now hear about two more projects
from Terry Jernigan (DTI in the schools!)
and Sean Kang (more on spacing)

• Questions?



A Neurodevelopmental Case for
Personalizing Education:

Brain Development and Behavioral
Phenotypic Variability

Terry Jernigan



Preview

• Imaging reveals surprising alterations in
neural tissues throughout childhood.

• Diffusion imaging adds new information
about brain connectivity.

• Neural architectural variability is linked to
behavioral phenotypes and to common
genetic variation.

• What does it mean for educational
technologies?



Conventional View of
Brain Morphology in 1980’s

• Brain size and morphology are adult-like in
school-aged children.

• Brain morphological characteristics are stable
across childhood, adolescence, and adulthood.

• Atrophy of some brain structures begins in old
age.



Brain Morphometry



Age-Related Alterations of
Normalized Cerebral Gray Matter Volume
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Mapping of Cortical Thinning with Longitudinal MRI Data
Gogtay et al., PNAS, 2004



Age-Associated Alterations in Volumes of
Subcortical Structures
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White Matter Growth Associated with Post-natal Proliferation
of Oligodendrocytes and Myelin Deposition
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Early MR Morphmetry Results

• During the first 2-3 decades of life, age-related tissue alterations,
presumably related to brain maturation, can be observed with
morphometry.

• Though the first evidence came in the form of apparent changes in
the morphology of gray matter structures, it was suspected that
much of the change was directly, or indirectly, related to continuing
myelination and fiber tract development.

• However, until recently, further investigation of fiber tract
maturation was limited by the lack of sensitivity to white matter
structure with existing MR methods.



Diffusion imaging provides new
information about brain

connectivity



Diffusion Tensor Imaging

• Measures diffusion (motion) of protons in water molecules.

• Magnitude and direction of proton motion within a voxel can be
described by a “tensor”.

• Proton diffusion in CSF and gray matter is relatively isotropic .

• The linear structure of fiber tracts constrains proton diffusion and
produces anisotropy.

B
A



Diffusion Imaging Reveals Locations of Brain Fiber Tracts



Diffusion Imaging of Brain Development

• During development, increasing
myelination and axon calibre,

• accompanied by less extracellular free
water,

• reduce diffusivity and increase fractional
anisotropy (FA) in brain fiber tracts.



Lebel et al., Neuroimage 2008
N=202; age range: 5.6 - 29.2



Lebel et al., 2007 ISMRM Meeting



Lebel et al., 2007 ISMRM Meeting



Lebel et al., 2007 ISMRM Meeting



FA increases in superior
longitudinal fasciculus and

cingulum (ages 3 to 20)



Neural Architectural Variability

• Examined closely, the brain exhibits a complex pattern of
age-associated tissue alterations well into adulthood.

• There is substantial variability among individuals at all
ages.

• The questions:
– What is the source of this variability?

• Genetically-mediated difference in patterning of brain (cortical
arealization, strength of connectivity, etc)?

• Genetically-mediated status of maturation?
• Experience-related neuroplastic effects (short term, long term)?
• Interactions between experience and phase of maturation?

– Is this variability functionally meaningful?



Variability in neural architecture is related
to behavioral phenotypic differences,

especially (but not exclusively) in children.
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FA in Right IFG and Right pre-SMA Both Contribute to Prediction of
Inhibitory Function in Children

(Madsen SK, Baare WFC, Hansen MV, Skimminge A, Ejersbo LR, Ramsøy TZ, Gerlach

C, Åkeson P, Paulson OB, Jernigan TL ., 2009, Neuropsychologia)

• Individual differences in children’s inhibitory function are related to FA
differences within the neural circuit previously implicated in SST performance.



Spatial Working Memory Performance Related to FA in Superior
Longitudinal Fasciculus

(Vestergaard M, Madsen KS, Baare WFC, Skimminge A, Ejersbo LR, Ramsøy TZ,
Gerlach C, Åkeson P, Paulson OB, Jernigan TL. ., in press, J Cog Neuroscience)



TDLC Study of
Rapid Auditory

Sequencing
• RAS improves and the

white/gray ratio increases
with age in children (6-13
years)

• Controlling for age,
increased white/gray ratio
is associated with better
RAS.

• Higher left than right fiber
tract asymmetries (in
FA)are also predictive of
better RAS.



Behavioral Variability is Related to Neural Variability
(particularly in brain connections)

• Performance on cognitive tasks across
multiple domains correlates with fiber tract
structural characteristics.

• The associations remain after controlling for
age and global parameters.

• It appears that profiles of behavioral attributes
are reflected in profiles across brain fiber
pathways.



How do we interpret these associations between the
neural and the behavioral differences?

• In children, could they arise because of
differences (among children of similar age) in the
pace of biological development of the brain?

• To what extent do they reflect functional effects
of genetically-mediated differences in neural
connectivity – or in the pace of development of
these neural connections?

• To what extent are they driven by neuroplastic
effects of experience, practice, training, and
other factors that affect neural activity within
brain systems?



Learning to Juggle Produces Change in Cortical
and Tract Morphology

(Draganski et al., Nature, 2004; Scholz et al., 2009)

• Normal volunteers with no juggling skills were scanned at baseline.

• Subjects were taught a simple juggling task and re-scanned.

• After 3 months (Draganski et al.) or 4 week (Scholz et al.) without practice,
jugglers were scanned a third time.

• Focal increases in gray matter were observed in middle temporal and left
intraparietal sulcus areas, FA was increased in underlying white matter.



Altering Cortical Connectivity: Remediation-Induced Changes
in the White Matter of Poor Readers

Timothy A. Keller and Marcel Adam Just, Neuron, 2009

A: Areas where FA
increased in
poor readers
after
remediation.

B: Areas where FA
differed
between good
and poor
readers at
baseline

• 8-10 year old children show apparent intervention-
linked alterations of FA in fiber tracts.





Genes Exert Strong Effects on
Brain Morphology

• Twin studies have revealed high heritability of
brain morphology.

– We recently reported that 2 attributes of the neural
architecture, cortical surface area and cortical
thickness are both highly heritable, but exhibit no
genetic association.



Sex-dependent association of common
variants of microcephaly genes with brain
structure
(Rimol et al., PNAS)

• Association of
CDK5RAP2 SNP
rs2282168 with
cortical area in (A)
males and (B)
females.



Pattern of Cortical Arealization Associated with Common
Genetic Variation (in males)

MECP2 SNP rs2239464
(Joyner et al.,PNAS, 2009)





Creating a Pediatric Imaging
Genomics Data Resource

• 9 sites across U.S.

• 1400 children, aged 3 – 20 years

• sMRI, DTI, rs fMRI

• Saliva samples for genotyping

• NIH Toolbox Cognitive Assessment

• A subset followed longitudinally at UCSD



Synergies with TDLC

• Studies of adaptive educational technologies
within the Center cohort followed in
longitudinal studies: to assess their impact
on developing behavioral and neural
phenotypes.

• Focus on collecting more information about
social and emotional factors, both as
modifiers of response to interventions, and as
outcomes of them.



Why is this research relevant?

• Genetic variation almost certainly contributes to
subtle differences in neural architecture that
play a role in shaping the qualities of our minds.

• If this is true, then it is plausible that there are
subtle qualitative differences among individuals
in how they make sense of the world.

• Major advances in educational technologies
have come from the application of adaptive,
intelligent tutoring methods.



Why is this research relevant?

• The best adaptive technologies monitor the level
of mastery of a learner and supply the most
relevant information on an individual basis.

• But arguably, the most inclusive educational
technologies require intelligence, not only about
the learner at different stages of learning, but
also about differences among learners.

• A more complete model of the nature and
sources of variability in human learning is
needed for the next generation of intelligent,
adaptive educational technologies.
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The Spacing Effect

• Reviews are more effective when distributed or spaced
out, rather than massed (with total time equated)

• One of the most robust phenomenon; observed with
diverse range of materials / types of learning

• Ebbinghaus (1885):

“…with any considerable number of repetitions a suitable distribution of
them over a space of time is decidedly more advantageous than the
massing of them at a single time.”

3



The Spacing Effect

4

Basic structure of a study examining the effect of spacing:

Initial
Study

Review of
the same
material

Final
Test

Review of
the same
material

Initial
Study

Final
Test

time

Inter-Study
Interval (ISI)

Retention Interval
(RI)



The Spacing Effect

• Is there an optimal ISI?

• Does the answer depend on the RI?

5



Cepeda, Vul, Rohrer, Wixted, &
Pashler (2008)

• Experimentally examined 26 different combinations of
ISIs and RIs

• Stimuli: 32 obscure facts

• Procedure

– Session 1: Learn 32 facts to criterion of one correct recall of
each fact.

– Session 2: After appropriate ISI, subjects tested 2x with
feedback.

– Session 3: After appropriate RI, final test.

6



7



8



Cepeda et al. (2008) - Conclusions

• Yes, there is an optimal ISI, but it depends on the RI.

• As RI increases, the optimal ISI also increases; the ratio
of optimal ISI to RI is ~ 5-20%.

• The optimal ISI provided an average of a 64% increase
in final recall, relative to the massed condition.

9



Expanding vs. Equal Interval
Spaced Retrieval

10
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Landauer & Bjork (1978) proposed the advantage of
expanding over equal interval retrieval practice.

An expanding retrieval schedule fosters successful retrieval at
longer and longer intervals (i.e., by having the first retrieval attempt
occur soon after studying, insures success; difficulty increases
progressively with subsequent attempts).

(5-5-5)
(1-4-10)

Stimuli: 1st name – Last
name pairs (e.g.,John Smith)

(30 min later)

12

Expanding vs. Equal Interval
Spaced Retrieval



But findings since then have been rather
inconsistent, with several instances of failures to
replicate.

E.g., Karpicke & Roediger (2007):

Stimuli: GRE vocab
(sobriquet – nickname)

13



Other studies that failed to find an advantage of
expanding over equal interval retrieval practice:

• Cull (2000)

• Carpenter & DeLosh (2005)

• Balota, Duchek, Sergent-Marshall, & Roediger (2006)

• Logan & Balota (2008)

• Karpicke & Roediger (2010)

14
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“The results of the current review lead us to conclude
that, as expected, spaced practice produces
considerable benefits in learning compared to massed
practice; however, the additional benefits of expanded
practice over equal interval practice have not been well
substantiated in recent research.”

(2007)



But…

Limitations of prior research comparing expanding
and equal interval spacing:

1.Spacing almost always manipulated within a
single learning session

2.Focus on final test performance after some
specified retention interval

16



But…

In everyday practice, more realistic to think of
review sessions occurring on separate days.

Also, what if the aim is to learn and maintain
information over the long-term (rather than to
optimise performance at a single time point in the
future)?

E.g., On-the-job training; medical training

17



Present study

• Compared 2 different schedules of retrieval practice:

– Expanding: Day 1, 3, 9, 28 (2-6-19)

– Equal Interval: Day 1, 10, 19, 28 (9-9-9)

• Study stimuli: 60 Japanese-English word pairs

• Day 1:

– Items presented once for Study (8s each), followed by 3
cycles of Test-Study (6s of cue only, followed by 2s of
cue+target)

• Subsequent review days:

– 3 cycles of Test-Study

• Final test on Day 84 (12 weeks after initial study)18
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Performance during the training phase:



Results
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Conclusions

21

• If review sessions are spread out over days, it is better to
schedule the sessions over expanding intervals (rather
than at equal intervals).

• Such an expanding schedule of practice seems to
promote quicker acquisition of the information and better
maintenance of the information over the learning period.

• In addition, an expanding schedule seems to retard
forgetting of the information after a long delay.



Overview of  VL2   

Translational Research 

Program
Thomas E.  Allen

2010 SLC PI Meeting



Setting a framework
• Inadequate history of classroom based research
• Science not at a point where we can specify 

pedagogical parameters. VL2 is the first time we 
have brought an interdisciplnary team of 
scientists together.  Multidisciplinarity puts us at 
the ground floor of theory building.

• Characteristics of the landscape:
–Low prevalence population
–Highly diverse
–Rabid proponents of opposing pedagogical 

philosophies.



Vl2 framework
• Multiple pathways to success
• A difference model, not a deficit  model
• Acknowledgement of individual differences 
• Foundational work needed -

–Creation of appropriate assessments.
–Understanding Visual Language development
–Studying population longitudinally
–Identifying and evaluating promising 

instructional strategies
–Designing in vivo experiments in classrooms 

based on our discoveries and emerging theory.



• Visual Attention

• Representation

• Combinatorial Competence

Three Research 

Thrusts



Visual Attention

• Visual engagement

• Eye gaze and eye shift

• Parental scaffolding

• Placement of objects in the visual 

space; allocation of perceptua 

resources in the periphery





Problem
• Low academic achievement levels in 

math, science, and reading

• Use of instructional practices developed 

for aurally-oriented classrooms

• Lack of training or teacher preparation 

programs focused on visually-oriented 

instruction.



Theory
• Two channels for working memory: visual and 

auditory.

• Hearing individuals use dual channels allowing 

them to split their attention

• Most deaf individuals use only the visual 

channel, requiring continual shifting of 

attention

• To reduce cognitive load, integration of the 

language of instruction with instructional 

materials is necessary. 



Moderators
• Single channel versus dual channel for 

attention

• Home language: auditory versus visual

• Capacity for joint visual attention

• Ability for sustained visual attention

• Temporal and spatial aspects of 

attention



Mediators (Malleable 

factors)

• Teacher instructional strategies

• Design of visual materials

• Management of visual attention

• Classroom arrangements



Possible research 

focci• Bilingual strategies in signing 

classrooms

• Instructional material design elements

• Use of physical props

• Pausing and directional prompts

• Animation

• Animation with captions/fingerspelling

• Size of display



Desired results

• On-level academic performance

• New pedagogies developed for visually-

oriented classrooms that integrate 

visual language with visual displays and 

ensure effective management of visual 

engagement.



•Position of students 

and teacher

•Position of the 

hands

•Use of PowerPoint

•Pausing rules

•Embedded video 

on the same display
Integration of sign and 

diagram

Separation of sign and 

diagram



Representation

• How are complex relationships 

depicted?

• Embodiment of meaning:  human 

body as an instructional media

• Role of gesture?



Example:
• Padden and Goldin Meadow 

study:

• Properties of conservation and 

concepts of mathematical 

equivalenceand use of gesture 

in learning



Combinatorial Competence
• Mapping linguistic elements across 

modalities

• Lexical access in two languages

• Language experience versus 

phonological knowledge

• Coding strategies for English print for 

signing children



Classroom studies
• A focus on bilingual approaches

• Identification of promising existing 

strategies.

• Apply rigorous assessment and 

progress monitoring approaches. 

• Conduct classroom based research 

with a view towards conducting more 

controlled experiments.



Population and 

Assessment Studies
• Early Education Longitudinal Study 

(EELS)

• Broad range of assessments, including 

newly developed assessments

• Broad sample

• Identification of factors that contribute to 

reading gains. 



The VL2 Early Education Longitudinal
Study (VL2 EELS):

Identifying factors influencing early literacy
for deaf students through longitudinal study
of student, family, and school characteristics

Donna A. Morere, Ph.D

Gallaudet University

VL2



Problem: Inadequate Reading
Achievement in Deaf Children

• Average reading levels for 18 YO’s for 1990 SAT-8
Reading Comprehension (Holt, J., 1993):

– 3.8 grade level for profoundly deaf students

– 4.5 grade level for severe hearing loss

– 5.4 grade level for those with less than severe loss

– All levels combined averaged about grade 4.5.

• Despite various interventions, 1997 Stanford 9 data
continue to show 3rd to 4th grade reading
comprehension for D/HOH 18 YO’s. (Traxler, 2000).

• These findings are essentially unchanged from the
results of surveys in the early 1970's.

VL2 EELS Translatinal 2



Deaf Readers

• Only 40% of college students with severe to
profound hearing losses read at or above the
fourth grade level and about eight percent read
at or above the eighth grade level. (Allen, 1994).

• We need to understand what is required for
deaf children learn to read in order to improve
these results.

VL2 EELS Translatinal 3



Learning to Read

• Reading is not a “naturally developing”
process

– Print is an artificial symbol system typically
mapped to spoken language.

– Regardless of hearing status, reading is an artificial
skill which must be taught.

– Up to 40% of hearing children have trouble
learning to reading.

• Intelligence does not determine reading skill.

VL2 EELS Translatinal 4



Reading & Language

• Learning to read depends on the child’s existing
knowledge of language

• For hearing children this is typically the language
in which they will learn to read.

• Deaf children may communicate using
– The language of print or communication methods

based on that language
• Oral or Cued English - PMSG
• English-based signs - ~M, SG

– A language different from the language of print
• American Sign Language - different PMSG

VL2 EELS Translatinal 5



Research: Adult deaf readers

• Some studies indicate that good deaf readers use
a phonological decoding
– Hanson, 1989; Hanson, Goodell & Perfetti, 1991

• Some indicate that D/HOH readers depend
heavily on context (Marschark & Harris, 1996)
– Others suggest that this strategy is inadequate for

poor deaf readers (deVilliers & Pomerantz, 1992).

• Reading comprehension appears to depend on
the range and depth of word knowledge of the
reader. (Paul, 1996)

VL2 EELS Translatinal 6



Research: young deaf readers

• Research into the reading skill development of
deaf children is limited, and typically relates to
subsets of deaf children, such as

– Those with cochlear implants (Geers, 2003)

– Those using forms of communication

• Signed English, Total Communication, Cued Speech,
Oral, ASL

– Luetke-Stahlman & Nielson (2003); Dyer, MacSweeney, Szczerbinski,
Green & Campbell (2003); Charlier & Laybaert (2000)

VL2 EELS Translatinal 7



Research: young deaf readers

• Other research has focused on specific
approaches to single word decoding:

– phonetic

– sign- based

– print-based (orthographic)

– fingerspelling
• Alegria, Lechat, & Leybaert, 1990; Bellugi, Klima & Siple, 1975;

Hanson, 1982; Perfetti & Sandak, 2000; Poizner, Bellugi &
Tweeney, 1981; Shand, 1982; Miller, 2006; Haptonstall-Nykaza &
Schick, 2007

VL2 EELS Translatinal 8



Intervention research with
deaf readers

• Limited and typically focus on development of
skills associated with reading in hearing
children

– Targeted interventions for phonetic decoding

• Visual phonics (Narr, 2008; Trezek & Malmgren, 2005;
Trezek and Wang, 2006)

• Despite apparent gains in rhyme judgment and,
presumably, decoding, Narr reported

– “Results did not support a relationship between reading
ability and rhyme judgment for these students.” (p.413).

VL2 EELS Translatinal 9



Very little attention has been paid to
reading skills beyond the decoding
process.

The assumption appears to be that
once a child can decode, s/he can read
for comprehension.

VL2 EELS Translatinal 10



Implications for intervention

• Recommendations concerning interventions
and program changes have been based on
– Philosophical positions

– Assumptions based on reviews of the literature on
deaf and hearing readers

• Support for a combination of full language access via
ASL plus “limited access” to spoken language (Perfetti &
Sandak, 2000)

• Support for bilingual ASL/English via Cued Speech
(LaSasso & Metzger, 1998)

VL2 EELS Translatinal 11



How can we enhance reading
development in deaf children?

• Research on existing reading skills of adults
and children does not tell us what is required
to develop these skills.

• In order to determine what is needed for
children to develop reading skills, we need to
look at how these skills develop.

• Language (through all modalities)

• Reading

• This is the objective of the VL2 EELS.

VL2 EELS Translatinal 12



Sample

• A cohort of 3, 4, and 5 year olds
• Broad range of communication:

– Oral, Total Communication, Cued Speech, ASL/English
bilingual

• Varying educational settings:
– Residential/day SFD, self contained in mainstream,

mainstream/reverse mainstream

• Who use/don’t use HA/CI
• Broad ranges of skills
• To be followed for 3 years

VL2 EELS Translatinal 13



Assessment

• Questionnaires completed by school
administrators, teachers, and parents
– Program, teacher, and parent attitudes about

communication and teaching deaf children

– Characteristics of the educational program
• Communication style, class size, teacher background &

communication, etc.

– Characteristics of the home
• Communication used, discipline, literacy focus, etc.

– Characteristics of the child

VL2 EELS Translatinal 14



Assessment

• Cognitive functioning

• Cognitive processes associated with reading

• Language (English and ASL)

– Test administration will be matched to the
child’s communication

– Vocabulary and “listening” comprehension

• Basic reading and pre-reading skills

VL2 EELS Translatinal 15



Direct Assessment of the Child

• Cognitive level
– PTONI

• Attention
– Leiter-R: Attention Sustained

• Language
– WJ-III: Picture Vocabulary
– PPVT-IV/CPVT
– Enns Receptive ASL

• Sign Vocabulary Check
– WJA: Understanding

Directions

• Memory/learning
– WJ-III Visual-Auditory

Learning

• Phonological Awareness
– TOPEL: Phonological Awareness
– CTOPP: Sound Matching

• Rapid Naming
– CTOPP: Rapid Color Naming
– CTOPP: Rapid Object Naming

• Print Knowledge
– Letter Say/sign
– Letter Writing
– TOPEL: Print Knowledge
– WJ-III Letter-Word

Identification
– WJ-III Passage Comprehension
– PIAT-R Reading Comprehension

VL2 EELS Translatinal 16



Questions for direct assessment

1. Does early language skill development (regardless of modality)

predict reading skill development in deaf children?

a) Does one approach (ASL or Oral/Cued/Signed English) produce better

outcomes or is language fluency/knowledge the critical factor?

b) Do different approaches to teaching English have different outcomes?

2. Does early phonological awareness predict reading skill

development in deaf children?

3. Does early print knowledge predict reading skill development in deaf

children?

4. Does rapid naming predict reading skill development in deaf

children?

5. Does attentional capacity affect reading skill development in deaf

children?

VL2 EELS Translatinal 17



Questions for surveys

1. Does parental hearing status affect literacy attainment?

2. Does use of residual hearing through amplification/CIs affect literacy
attainment?

3. Does pre-implant use of visual language in the home moderate the
effectiveness of implantation in promoting literacy?

4. Does the use of any specific communication method in the home
contribute to enhanced literacy attainment in school?

1. Does cross-modal bilingualism (English and ASL) affect literacy outcomes?

2. Does the use of fingerspelling in the home affect literacy attainment in
school?

3. Does English skill support in the home (via Oral communication or Cued
Speech) contribute to enhanced literacy attainment in school?

5. Does increased family support for literacy affect literacy attainment?

VL2 EELS Translatinal 18



Identification Outcomes

• Test assumptions about effective decoding
strategies based on “hearing” research.

• Identify the factors critical literacy skill
development of in deaf children.
– Parental, demographic & program factors

– Communication/language factors

– Cognitive and experiential precursors to enhanced
reading fluency and comprehension.

– Interactions between communication mode and
effective decoding strategies.

VL2 EELS Translatinal 19



Intervention Outcomes

• Guide development of early reading and pre-
reading interventions

• These data should allow targeting of pre-
reading skills key to this population

– First language development or attentional
regulation vs decoding skill/word reading?

– Fund of knowledge vs basic reading skills?

– Writing to read?

VL2 EELS Translatinal 20



Intervention Outcomes

• Potential Focusing of interventions based on
the intersection between communication
mode and effective strategies

– Target skills focus based on communication used?

– Targeting skills based on child characteristics?

• Interventions which target skills leading to
reading comprehension, not just decoding.

VL2 EELS Translatinal 21



Tertiary Outcomes

• Potential application to hearing dyslexics and
hearing children with visual orientation

• Potential to inform decisions regarding
communication approaches for deaf children.

– Parent-child communication

– Educational communication

VL2 EELS Translatinal 22
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Thank you for your attention.

-The VL2 Early Education Longitudinal Study
Team



Transla'on in the Science of Learning Centers 

Broad meanings of “transla1on” across the SLCs 

 Driven by the needs and demands of the research focus of each center 

 PSLC work on the importance of specifica1on  
 (which brings to mind David Cohen´s 1999 comment on the 
policy importance of specifica1on) 

  LIFE´s work on the importance adapta1on to context  
 (which brings to mind the policy importance of loca1on in a 
distributed system) 

Examples of Different takes on “transla1on research” in educa1on 



As a group, where are the SLCs with respect to transla6on?  

We seldom speak of transmission (the linear model of hand‐off) 

We do all speak of “transla1on”  but mean different things by it 

Some are speaking of “transla1on research”  

And we have not yet started to talk about transforma1on 

Center´s “transla,on work” has not been presented as such before, so we 
have not had  a chance to explore our different takes on issues such as 

 localiza,on 
 grain size of the phenomena under study 

        stages in the transla1on process 
 agency 
 roles 

and thus learn from each other methods and approaches 



One way is to build on the useful framework derived from focusing on 
improvements in educa,on as a  complex system  
(Maroulis et al. Science Oct. 1st, 2010) 

“mechanism based”   (micro‐level)    “effects based”   (macro‐level) 

Where could we look for deepening our understanding of  
research on transla6on leading to improvement?  

“A key challenge facing educa1on research is to integrate insights about 
“micro‐level” processes with evidence about aggregate, “macro‐level”  
outcomes that emerge from those processes.”  



Closing Comments 

 What lies behind considera1ons of  “Fidelity”  and “Adapta1on” 

     Fidelity to the design 

     Adapta,on to the environment 

These two stances look at the problem from two different goals 

Scaling up differs fundamentally when what is scaled up is an interven6on 
than when it is a process of change. 

The focus switches to processes of change because no educa1on interven1on 
is a world into itself – it forces changes in the system that uses it. 



On a personal note, going from transla6on research to 
implementa6on research 

If we look at educa,on as an integrated complex system whose outcome is 
learning, 

Where is the missing research, that has just now started to appear? 

   “Adapta1on” to an environment (i.e. learning within organiza,ons) 

    
 ¨Sustainability” of improved environments (i.e. learning by the 
educa,onal organiza,on) 

And I will end up with an anecdote from LeTUS (learning with educa,onal 
technologies in urban systems) 



10/20/2010

1

E-books and iChats:
The role of social interaction in

language and literacy

Kathy Hirsh-Pasek, Ph.D.
Temple University, SILC

Sarah Roseberry
University of Washington, LIFE

Julia Parish-Morris
Temple University

We are told that children
learn best

In sensitive and responsive environments!

They learn language in conversations

And literacy through “dialogic reading”
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That is, young children….

 Are people persons

 Learning in social environments where people
respond to their interests and engage them

Yet, increasingly, this social
context is giving way to
Tech-savvy Toddlers

 Children under 3 years spend 3-4 hours per day with
screen media

(Christakis, 2009)

 By age 8, children use technology nearly 7.5 hours per
day (not including text or phone time)

(Rideout et al., 2010)

 And just this week we learned that there are scores of
iphone apps for the toddler set (NYTimes, October 17,
2010) These are advertised as a way to occupy your
toddlers.
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Can children learn
language and literacy
when interacting with high
tech?

 The evidence is mixed
 (De Jong & Bus, 2002; Johnston, 1997; Krcmar et al., 2007; Kuhl et al.,

2003; Roseberry et al., 2009; Scofield & Williams, 2009; Zimmerman et
al., 2007)

 And it depends on the kind of high tech and how
it is used.

 For TV – little language learning before age 2

 For computer use – some learning

Can technology encourage literacy and
language development in ways that mirror live

social interactions?

Two recent studies:

1. E-books

1. iChats (or skype)
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E-books
Julia Parish-Morris

Kathy Hirsh-Pasek

Roberta M. Golinkoff

E-books (the toddler versions of the Kindle and ipad)

 Electronic console books (e-books) are marketed
to children as young as 6 months of age

 66% of parents agree that educational toys like
talking books are “very important” to a child’s
intellectual development

(Kaiser Family Foundation, 2005)
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E-books

 Although many e-books encourage parents to
read books with their children, many have
headphone jacks so children can operate them
independently

 “When books talk back, every word is an adventure. And
with volume control, headphone jack and automatic
shut-off, the books don't have to talk too loudly.”

(LeapFrog website—for ages 4-8)

What we know about early
reading

 Parent-child reading experiences are predictive
of later literacy

 Dialogic Reading is particularly beneficial

 Contributes to the development of language and
literacy skills
(Chow & McBride-Chang, 2003; Fielding-Barnsley & Purdie, 2003; Hargrave &
Senechal, 2000; Heubner & Meltzoff, 2005; Zevenbergen & Whitehurst, 2003)

 Predicts later school outcomes
(Hargrave & Senechal, 2000; Karrass & Braungart-Rieker, 2005; Yont, et al., 2003;

Zevenbergen & Whitehurst, 2003)
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Dialogic Reading

 When adults engage in dialogic reading with
children, they:

 ask questions about the story

 offer expansions, corrections, and praise

 encourage children’s active participation in
becoming the teller of the story

(Whitehurst et al., 1988)

 “Do you remember going to the doctor like Caillou?”

 “What do you think Caillou will do at the doctor’s office?”

 “Can you stick out your tongue like Caillou?”

Research Questions

 Do e-books promote the type of dialogic parent-
child interactions as traditional books?

 Does children’s comprehension of the story differ
between e-books and traditional books?
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Study Design

 Parents and children (3- and 5-years old)
participated in one of 3 reading contexts

E-book Traditional Book E-book, no console

 Reading interactions were transcribed for parent/child language

 Children were tested on story comprehension

What did we find?
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Results – Parental Language

 Parents who read e-books with their children:
 talked less about the story

 talked more about behavior

 The quality of the e-books themselves did not matter (they
produced the same language as traditional books!)

Results – Dialogic Reading
 How often did parent & child utterances “go beyond” the story?

 Parents and children were more likely to engage in dialogic
reading with traditional books than with e-books
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Results – Child Comprehension

 Children answered more content and chronology questions
correctly after reading traditional books

 3-year-olds required more social support to comprehend the
story than 5-year-olds

Conclusions

 Dialogic reading is truncated by e-books

 Replaced by behavioral directives, which are known
to be detrimental to later language

(Barnes et al., 1983; Masur et al., 2005)

 E-books do not foster the type of social
interaction that promotes language and literacy
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iChats (or Skype)
Sarah Roseberry

Kathy Hirsh-Pasek

Roberta M. Golinkoff

Video vs. Vivo

 Children under 3 years…

 DO NOT learn language from video

(Krcmar et al., 2007; Kuhl et al., 2003; Roseberry et al., 2009;

Scofield & Williams, 2009; Zimmerman et al., 2007)

 DO learn language from live social interactions

(Bloom et al., 1975; Brandone et al., 2007; Childers, & Tomasello, 2002, 2006;
Naigles et al., 2005; Tomasello & Farrar, 1986)
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Introducing Video Chats

 As a video…

 2-dimensional screen presentation

 As a live social interaction…

 Contingent interactions

 Relevant eye gaze, though not perfectly aligned

But there is a relatively new technology in
town…

What is important about video +
social interaction?

 Video chat interactions are contingent

 Characterized by the synchrony achieved when
both partners adjust their communicative timing and
content based on the other’s responses

(Csibra, 2010; Tamis-LeMonda et al., 2006; Bornstein et al., 2008)

 Contingent interactions facilitate language
development – much like dialogic reading

(Chouinard & Clark, 2003; Goldstein et al., 2003; Snow & Ferguson, 1977)
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Research Question

 Do young children learn new words from video
chats like they do from live social interactions?

Yoked Video Live Interaction
Video Chat

??

No word learning Robust word learning

A Difficult Test of Language Learning

 Verbs are the building blocks of grammar…

…yet action words are hard for children to learn

(Gentner, 1982; Gleitman et al., 2005)

 Using the same test conditions as in the television
study of Roseberry et al. (2009), we also asked
children to LEARN a verb and to EXTEND the
newly label to a new instance of the action.
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Study Design

 24- to 30-month-olds learned new words in one of
three ways:

 Video Chat Training

 Live Interaction Training

 Yoked Video Training (a pre-recorded video)

What did we find?
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Results – Quality of Interactions

 How did children respond to video chats compared to
live interactions?

 Children made just as many attempts to interact (i.e., verbally

responding to the experimenter, pointing to correct answers, waving) during
video chats as in live interactions

 Children participated in video chats, as in live
interactions!

Results – Language Learning

 Children who participated in video chats or live social interactions
extended their knowledge of the novel verb to a new exemplar

 Children did not learn from pre-recorded video
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Results – Language Learning

 Eye-tracking technology revealed that children who
looked more at the experimenter’s eyes learned the
novel words better

 BUT, this only helped when the experimenter’s eye gaze
was contingent with the child’s focus of attention (not the
learning session was pre-recorded by the same
experimenter who appeared on the television in response
to a control child)

Conclusions

 Video chats can be used to generate the type of
social interactions that promote language
development

 Why? Because social contingency and eye
gaze are preserved in video chats allowing it to
function as if children are in live social
interactions
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What have we learned
from e-books and iChats?

Social Interaction is Important

 Particularly important for language and literacy
are social interactions that:

 contain the qualities of dialogic reading

 parents ask questions and offer expansions

 parents encourage the child to interact
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Mechanisms of Social Interactions

 Contingency may be one mechanism of
language learning

 BUT children learn language from a medley of
cues and we are only beginning to understand
this complex process

(Csibra, 2010; Golinkoff & Hirsh-Pasek, 2008; Hollich et al., 2001)

Can technology promote
language and literacy?

It depends!
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 Technology that fosters social interactions or interactions
that approximate social interactions, can benefit children’s
literacy and language development

 E-books do not accomplish this in their current format

 iChats do create social interactions

 Future technologies like holograms and robots might also
enhance children’s learning and interaction

• (e.g. Meltzoff et al. 2009)

Thank you!



Studying and Fostering Learning 
through Joint Media Engagement 

Reed Stevens 
Northwestern University 
William R. Penuel 
SRI International 



Background & Motivation 
•  Stereotype of media use among children is isolated, 

passive individuals 

•  Prior research supports value of co-viewing:  

intentional adult actions to increase learning from 
television


•  Joint media engagement expands this focus

•  Media effects on learning remains very controversial 

•  Nearly no field studies of learning with media, even 

television. Dominant traditions of lab and 
intervention studies.


•  Potential for ethnographic studies to inform 
intervention. Influential in high tech corporate 
design, why not for technology and intervention 
design for children? 




Learning with media is (mostly) in the 
sea of blue 

48.4 % 



Line of LIFE Center studies:  
Learning & Media Controversies 
 
•  Study 1: Video game play

(2005-2006)


Tweens and teens playing video 
games at home




•  Study 2: TV viewing  

(2008-2009)


Younger children watching videos 
and television at home




•  Study 3: Texting & tweeting 

(soon to start)  
Teens texting friends and family, 
tweeting. 



The Video Game Playing Field Study 
•  Studied young people playing games of their own 

choice in their own homes

•  Synchronized In game and in room recordings

•  Video based interaction analysis of game play

•  These data and analytic techniques allow for analysis 

of joint media engagement with other people, as well 
as analysis of in-room learning resources


 

Stevens, R., Satwicz, T., & McCarthy, L. (2008). In game, In room, In world: Reconnecting video game play 
to the rest of kids’ lives. The Ecology of Games.  Salen, K. (Ed.), Cambridge: MIT Press.


 

 in room 
          in game




There’s plenty of action in the room, not just in 
the game 

•  Learning arrangements— the social and material 
arrangements in which game players learn and teach 
together — are remarkably diverse.  



•  Source of productive learning during game play is 
creative ways that young people invented or 
organized to learn together in-room (learning 
arrangements), more so than the design features of 
these commercial games (Gee’s argument). 




Diversity of learning arrangements in video game play 

Rachel uses her brother as used as a just-in-time guide and 
instructor to allow her to pursue customized goals in the game. 
He is brought in and then sent away. 


A physical instantiation of Legitimate Peripheral 
Participation. Mikey and Ted play in the central space. Little 
sister Maddy watches from periphery and plays a retired 
handheld. Sometimes Mikey stops the action and brings 
Maddy in to give her a chance to try a sub-skill in the game. 
Then she steps out and game play continues.


Tyler (left) devises multiple ways to demonstrate key moves 
amidst the flow Andrew’s active  play, either taking over 
quickly and displaying his hands as he performs a move or 
using an inactive controller in Andrew’s field of vision




The TV/video viewing study 
•  Studied young people watching programs or videos 

of their own choice in their own homes

•  Parallel approach to video game study

•  Younger children, ages 2 to 6

 

 In room 
          In show




Joint media engagement: enlisting co-
participation in the show’s agenda 

 in room 
               in show




Joint media engagement: collaborative 
pursuit of a line of emergent inquiry  

 in room 
                         in show




How and when is “interactive TV” 
successful at enlisting responses 
PROMPT ANALYSIS

•  No one responded to more than half 

of the prompts to which he or she 
was exposed.


•  On average,  children responded to 
22% of the prompts in a show.


•  Overall rates of response ranged 
from 42% (Preston, age 4) to >1% 
(Isabel, age 3).


•  Great variation between viewing 
events in the response rates of 
individual children (e.g., during one 
session Preston responded to 78% of 
prompts; on another 17%).


•  Question: why and when do 
children respond to prompts?







What I hope I’ve established… 
•  That in-context field studies promise to tell us new 

things about how, when, and with whom children 
learn with media


•  That the social aspects of media use and learning, 
what we call joint media engagement, are 
consequential for that learning


•  Studies of this kind are resources for translation into 
intervention studies…




Fostering Joint Media Engagement 

•  In the LIFE Center, these ethnographic field 
studies are informing research aimed at fostering 
intent joint media engagement in early childhood 
science 
–  Relies on content from public media programming from Sid the 

Science Kid 
–  Aim is to help children connect learning across different media 

platforms and settings on specific science topics 
–  Working in preschools serving low-income children, helping 

teachers and volunteer parents adapt and make use of a 10-week 
intervention 



Potential for Broad Impact: PBS Kids 
Media Content Reaches Millions 



Extending Public Media into Preschool 
Settings: Ready to Learn Initiative 
•  For the past five years, researchers at EDC and SRI have 

been examining the impacts of media-rich curriculum 
supplements on literacy and science outcomes 

•  Curriculum Supplements Use Media Elements from PBS 
programs to: 
–  Support repeated practice in an engaging context 
–  Foster and sustain children’s interest in content and skills 
–  Provide exposure to context across varied formats (“transmedia”; 

viewing, playing games, engaging in face-to-face activities) 



What Joint Media Engagement Can 
Look Like 
•  Clip produced as part of Ready to Learn study by Center 

for Children and Technology at EDC 
•  Developed for purposes of showing educators and program 

directors what learning across media formats and joint 
media engagement in preschool science can look like 



Impacts on Children’s Science Interest 
•  In a randomized control trial conducted in 80 preschool 

classrooms with 398 low-income children, we found: 
–  Coaches’ guidance in fostering joint media engagement and 

coordinating activities was successful in promoting high, 
consistent levels of implementation 

–  Children in exposed to the science curriculum supplement 
expressed more interest in science topics to their female caregivers 
at home, relative to a control group 

–  Although there were no effects of child gender on the results, as 
some have found, we did find that in the treatment condition, 
children reported their interest in these topics less often to fathers 

Penuel, W. R., Bates, L., Pasnik, S., Townsend, E., Gallagher, L. P., 
Llorente, C., et al. (2010). The impact of a media-rich science curriculum 
on low-income preschoolers' science talk at home. In K. Gomez, L. Lyons 
& J. Radinsky (Eds.), Learning in the disciplines: Proceedings of the 9th 
International Conference of the Learning Sciences (pp. 238-245). Chicago, 
IL: International Society of the Learning Sciences. 



LIFE Study: Fostering Intent Joint Media 
Engagement 
•  Work as co-designers with teachers and parents of 

preschoolers (uncharted territory) 
•  Jointly develop simple prompts that a range of adults can 

use to guide joint media engagements  
•  Use rapid iteration to develop increasingly effective 

designs that take advantage of learning affordances of 
digital media artifacts 



Early Findings from First Cycle of 
Design Research 
•  Early in the implementation 

–  Adults paused video to get kids to pay attention, not foster 
conversation  

–  Adults found it easier to mediate children’s engagement with 
computer games  

–  Making selective use of media was difficult for teachers and 
parents to do 

•  Later in the implementation 
–  Coach guidance did prompt adults to “transgress” to interrupt 

viewing with comments 
–  Children, on the second and third viewings of clips, became more, 

not less engaged, after having spent time in direct investigations of 
phenomena 

–  Children picked up language in other settings (“decay,” “reversible 
and irreversible change” 



Co-Design Project as a Case of 
Translational Research 
•  Ethnographic research findings inform the process by 

helping the team attend to particular arrangements in 
settings that can facilitate or hinder joint media 
engagement to promote learning 

•  Participation of ethnographic researchers in the design 
process provides mechanism for feedback and suggestions 
for design improvements 



Collaboration with JGC 
ADVISORY BOARD 
•  Sue Bredekamp. Council for Early 

Childhood Professional Recognition  
•  Linda Darling Hammond, Charles E. 

Ducommun Professor of Education at 
Stanford 

•  Tom Carroll, National Commission on 
Teaching and America's Future  

•  Herb Ginsberg, Herb, Teachers College, 
Columbia University  

•  Rob Lippincott, Senior Vice President PBS  
•  Shirley Malcom, Head of the Directorate for 

Education and Human Resources Programs of 
the American Association for the 
Advancement of Science (AAAS)American 
Association for the Advancement of Science  

•  Ellen Moir, Founder, New Teacher Center  
•  Sharon Robinson, President American 

Association of Colleges of Teacher Educators  
•  Susan Zelman, Corporation for Public 

Broadcasting  
•  Dorothy Strickland, Samuel DeWitt Proctor 

Chair in Education at Rutgers University 



Planned Workshop 
•  Support from MacArthur Foundation 
•  Jointly organized by LIFE researchers and the Joan Ganz 

Cooney Center 
•  Hosted by Northwestern University 
•  Objective: Bring leading media researchers to develop a 

research agenda on joint media engagement for learning 



Informing the Next Generation of Ready 
to Learn 
•  Funded projects in the next round of Ready to 

Learn call for innovative interventions aimed at 
improving low-income children’s learning by: 
–  Involving the community in design of educational resources 
–  Promoting transmedia learning: organized resources for learning 

that support a trajectory of learning across contexts and media 
–  Imagines the learner as situated within a community ecology of 

learning supports 



Carolyn Penstein Rosé
Language Technologies Institute

and Human-Computer Interaction Institute

With funding from the National Science Foundation and the Office of Naval Research



Social and Communicative Factors
in Learning Thrust
 Co-lead with Lauren Resnick, University of Pittsburgh

 Understanding the role of discussion in learning

 Training teachers to facilitate effective classroom
discussions

 Classroom discourse community, interactional sociolinguistics

 Accountable Talk (O’Connor, Michaels, & Resnick)

 Eliciting effective interaction between students

 Computer Supported Collaborative Learning Commuinity,
computational linguistics

 Transactivity (Berkowitz & Gibbs, Teasley, Weinberger, Rosé)



Example of Accountable Talk eliciting
productive classroom talk

Eddie: Well, i don't think it matters what order the numbers are in. You still
get the same answer. But three times four and four times three seem like
they could be talking about different things.

Teacher: Rebecca, do you agree or disagree with what Eddie is saying?
Rebecca: Well, I agree that it doesn't matter which number is first, because

they both give you twelve. But I don't get what Eddie means about them
saying different things.

Teacher: Eddie, would you explain what you mean?
Eddie: Well, I just think that like three times four can mean three groups of

four things, like three bags of four apples. And four times three means four
bags of three apples, and those don't seem like the same thing.

Tiffany: But you still have the same number of apples, so they are the same!
Teacher: OK, so we have two different ideas here to talk about. Eddie says the

order does matter, because the two orders can be used to describe
different situations. So Tiffany, are you saying that three times four and
four times three can't be used to describe two different situations?

ChallengeChallenge

Justification Request

Request ElaborationRequest Elaboration

Extension

Reasoning Critique

RevoicingRevoicing



Instructional event

Teacher
Accountable
Talk Moves,
Student
Transactivity
Moves

Assessment/
learning event

e.g, Student
articulation of
reasoning

Immediate
performance

Robust
performance

KEY
Ovals – observable
Rectangle - inferred
Solid line – cause
Dashed line – inferences

Knowledge,
cognitive and
social skills

Learning event
Positioning,
Argumentation, etc.
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 Combined investigation of Accountable Talk training (for
teachers) and CSCL (for students)

 9th grade biology, district-wide in Pittsburgh Public School
district

 Students prepare for whole group classroom discussions in
on-line small group discussions

 Questions:
 How can we use technology to prepare students for whole

group interaction?

 Will effects of interaction support during small group activities
transfer into the whole group setting?

5> Results >Learning Outcomes

In Vivo Studies



Helping students learn together in
on-line groups…

Higher Education

High School

Machine Learning



Ongoing Research Focus

 Identify conversational interactions that are
valuable for learning

Automatic conversation analysis

Facilitates learning research

Automates assessment of group processes

Enables context sensitive triggering of
support

 Interactive support technologies



Starting with lab studies…

Higher Education

High School

Machine Learning



 Different needs with
different types of learning
partners

 Experimental Design

 Use confederates as
learning partners

 Ability level :
High (HI) vs. Low (LO)

 Problems Identified

 Shallow explanations

 Paucity of teaching behaviors
within teams

Investigating Support Needs with
Different Types of Partners

“confederate learner” student

tutor



Investigating the Potential Impact
of Dynamic Support

 Experimental Design

 Ability level :
High vs. Low

 Dynamic Support:
Prompt vs. No Prompt

 Prompts elicited additional
attempts at explanation

 Significant benefit for
prompting on student learning
(F(1,37) = 4.12, p < .05, effect
size .66)



Download tools at:
http://www.cs.cmu.edu/~cprose/TagHelper.html
http://www.cs.cmu.edu/~cprose/SIDE.html

Monitoring Collaboration with
Machine Learning Technology

TagHelper

Labeled Texts

Unlabeled Texts

Labeled Texts

A Model that can Label More Texts

Time

B
eh

av
io

r

<Triggered
Intervention>



Florian Raudies

SLC 2010, Washington DC
10/15/2010

Modeling Visual Navigation 
Using Optic Flow
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Overview

Collaborations & Projects

Within CELEST

Segmentation of Flow for Visual Navigation

From Bench to Applications through Modeling

Conclusions
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Collaborators & Projects

Rick Gilmore
Pennsylvania, US
Developmental Psychology

Heiko Neumann
Ulm, Germany
Vision and Perception

Pieter Roelfsema
Amsterdam, Netherlands
Vision and Cognition

Ennio Mingolla
Boston, US
Modeling with Neural Networks

Micheal Hasselmo
Boston, US
Dynamics of Memory- 
guided Behavior

Visual 
Perception & 

Learning

Development of the 
Visual Motion System

Figure Ground Segregation

Motion Transparency & 
Binocular Transparency

Modeling Visual Navigation
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Within CELEST

Exploring mechanisms of visual navigation 
by modeling of

visual motion processing

estimation of ego-motion

segregation of independently moving 
objects

Working on functional connections and neural plasticity 
by designing neural network models with plasticity which

reflect sensitivity to visual motion of infants & adults

simulate shift of gaze



5

Visual Navigation

Problem: navigating towards a 
target while avoiding static and 
moving obstacles

focus on 
independently 
moving objects
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Segmentation of Flow for Visual Navigation

Problem: independently moving objects influences the 
estimated ego-motion

Heading towards a wall in the back
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Segmentation of Flow for Visual Navigation

Idea: a biologically 
motivated neural 
network to segregate 
independently moving 
objects
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Segmentation of Flow for Visual Navigation

Function of the network

Construct hypothetical 
flow based on estimated 
ego-motion

Compare hypothetical and 
detected visual flow

Spatial locations of 
disagreement are those of 
independently moving 
objects
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Segmentation of Flow for Visual Navigation

Scenario: independently moving pillar
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Segmentation of Flow for Visual Navigation

Flow & estimated ego-motion

Simulation results for ego-motion towards wall

Flow based segmentation

Color code
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From Bench to Application through Modeling

Goal: detection of semi-transparent regions for surveillance 
to zoom to these regions
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From Bench to Application through Modeling

Segmentation result for 
semi-transparent (blue) and opaque motion (green)
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Summary & Conclusion

CELEST provides a platform to explore methods of 
navigation

Here I presented techniques for the detection of image 
flow, estimation of ego-motion, and segmentation of 
moving objects

Topics of development, learning, and self-organization of 
the visual system are being addressed in collaboration with 
Rick Gilmore
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Interaction with Students

Guest lectures for the course 
“Adaptive Robotics”
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Thank you!



Sparse PCA SLC PI’s Meeting Oct. 15, 2010

A model of early sensory
processing in audition and vision

Dr. Honghao Shan!

As told to (and by) Gary Cottrell

gary@ucsd.edu
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A tad of background

• Why are sensory cells the way they are? (center-
surround ganglion cells in retina, edge-detectors in
V1, etc.)?

• One set of ideas are the efficient coding, sparse
coding or redundancy reduction hypotheses
(Attneave, Barlow, Field, Olshausen):

– The goal of the visual system is to learn the
statistical structure of its environment by
reducing the redundancy in it

– By doing this well, it can represent the world
efficiently.
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A simple (unrealistic) example

• Suppose two input signals (e.g., pixels) are
completely correlated:

Pixel 1

Pixel 2
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A simple (unrealistic) example

• Then we could represent that information with one
(linear) neuron:

• This is an example of redundancy reduction

Pixel 1 Pixel 2

0.5 0.5

0.5*Pixel 1 + 0.5*Pixel 2
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A simple (unrealistic) example

• Furthermore, we can reconstruct the original
pixels from that one “neural response”:

0.5*Pixel 1 + 0.5*Pixel 2

Pixel 1 Pixel 2

1.0 1.0
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A simple (unrealistic) example

• Hence the “autoencoder network”:

Pixel 1 Pixel 2

0.5 0.5

0.5*Pixel 1 + 0.5*Pixel 2

Pixel 1 Pixel 2

1.0 1.0
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Principal Components Analysis
• Principal Components Analysis would do exactly

this, because it learns representations based on
correlations between the inputs.

• This is an example of redundancy reduction and
dimensionality reduction (from 2 dimensions to 1)

Pixel 1 Pixel 2

0.5 0.5

0.5*Pixel 1 + 0.5*Pixel 2
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Principal Components Analysis
• Note that we can plot this “principal component” in

image space, corresponding to the “weights”,
(0.5,0.5)

• The same thing applies if we have more than two
pixels…so we have more than 2 principal
components…capturing more correlations…

Pixel 1 Pixel 2

0.5 0.5

0.5*Pixel 1 + 0.5*Pixel 2

Pixel 1 Pixel 2
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Principal Components Analysis
• And now we can see that the reconstruction is a

weighted version of that “image”

• The same thing applies if we have more than two
pixels…so we have more than 2 principal
components…capturing more correlations…

Pixel 1 Pixel 20.5*Pixel 1 + 0.5*Pixel 2

Pixel 1 Pixel
2

1.0 1.0
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Principal Components Analysis
• Here are the principal components of 10x10

patches of natural images:
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Principal Components Analysis
• But PCA learns these correlations in order of their

size: so the first principal component does a lot of
work:

1st PC
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Principal Components Analysis
• and the last principal component does very little

work:

last PC
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Principal Components Analysis
• So we can throw a lot of them away and you can’t

tell the difference in an image that was
reconstructed from them:
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Principal Components Analysis
• So PCA does two things right: It decorrelates the

inputs, and it reduces dimensionality, making it
“efficient” at encoding images…

Original Compressed
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Principal Components Analysis
• But no neuron should have to be the first principal

component: So we should distribute the load
evenly - this is called “response equalization.”
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Principal Components Analysis
• Secondly, PCA is profligate with connections -

every pixel is connected to every principal
component “neuron”: we should try to reduce the
connections also.
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Sparse Principal Components
Analysis

• We will try to minimize reconstruction error,

• While trying to equalize the neural responses

• And minimizing the connections.
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Sparse Principal Components
Analysis

• We minimize:

• Subject to the following constraint:
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Information Kept With Sparse
Connections

• the model is applied to 20 X 20 image
patches, and the dimensionality reduced to
100.

• Our model captures 99.23% of the variance
that could be captured by an optimal linear
model with 100 output neurons.

• 96.31% of the connection weights in our
model are zero.
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Information Kept With Sparse
Connections
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The model as a neural net…

It is AT that is mostly 0…
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Results

• On grayscale images:

• Note that we get essentially the same results
applying the model to pink noise images…
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Results

• suggesting the 1/f power spectrum of images
is where this is coming from…
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Results

• On color images:

• Many people have gotten this color opponency
before, but not in center-surround shape.
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Results

• The role of the number of features: 100 versus 32
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Results

• The role of :

• Recall this reduces the connections…
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Results

• The role of : higher 
means fewer connections,
which alters the contrast
sensitivity function (CSF).

• Matches recent data on
malnourished kids and
their CSF’s: lower
sensitivity at low spatial
frequencies, but slightly
better at high than normal
controls…
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Trained on grayscale video…
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Results

• On grayscale video:
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PARVO?

MAGNO?

This suggests that these cell types exist because they
are useful for efficiently encoding the temporal

dynamics of the world.
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Speech

• Smith & Lewicki showed that Independent
Components Analysis (ICA) could be used to
explain the gammatone filters in audition:
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Speech

• (Olshausen & O’Connor, 2002) wondered:

• Why would the brain use the same strategy
for preprocessing at a pre-cortical stage in
the auditory pathway and an early cortical
stage in the visual pathway?

• Put another way:
– ICA can explain account for V1 cells in vision - but not

retinal ganglion cells.

– Why would it be used for the processing layer
corresponding to retinal ganglion cells in audition???
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Speech

• The TIMIT dataset contains recordings of 630
speakers of eight major dialects of American
English, each reading ten phonetically rich
sentences, recorded as 16-bit, 16kHz speech
waveform files. E.g., “Rock n’ roll music has great
rhythm”:
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Speech

• Using exactly the same algorithm, applied to
speech, environmental sounds, etc.:
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So…

• To answer Olshausen’s question - you don’t need
ICA to get gammatone filters.

• SPCA can account for precortical processing in
both audition and vision…
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Questions?



SIMSTUDENT IN 10 YEARS
MODELING AND REACTING TO THE 

STUDENT'S PROBLEM-SOLVING PROCESS

GEOFF GORDON      MACHINE LEARNING DEP’T, CMU

NOBORU MATSUDA    HCII, CMU

NAN LI    CS, CMU

with thanks to

KEN KOEDINGER    HCII, CMU

WILLIAM COHEN    MLD, CMU
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A COGNITIVE TUTOR FOR EQUATION 
SOLVING
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COGNITIVE MODEL

3(2x – 5) = 9

6x – 15 = 9 2x – 5 = 3 6x – 5 = 9

Solves problems and learns—in the many ways students can

3
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COGNITIVE MODEL

3(2x – 5) = 9

6x – 15 = 9 2x – 5 = 3 6x – 5 = 9

If goal is solve a(bx+c) = d
Then rewrite as abx + ac = d

If goal is solve a(bx+c) = d
Then rewrite as abx + c = d

If goal is solve a(bx+c) = d
Then rewrite as bx+c = d/askills bug

Solves problems and learns—in the many ways students can

3



Geoff Gordon—SLC meeting—Oct 2010

COGNITIVE MODEL

3(2x – 5) = 9

6x – 15 = 9 2x – 5 = 3 6x – 5 = 9

Model Tracing: follow students through individual 
approaches to problem                                              
⇒ context-sensitive feedback 

If goal is solve a(bx+c) = d
Then rewrite as abx + ac = d

If goal is solve a(bx+c) = d
Then rewrite as abx + c = d

If goal is solve a(bx+c) = d
Then rewrite as bx+c = d/askills bug

Solves problems and learns—in the many ways students can

3
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WHAT DOES MODEL LOOK LIKE?

4
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WHAT DOES MODEL LOOK LIKE?
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Mailing lists

Textbook

Grading

Homework

policy

Collaboration

policy

Late policy

Regrade policy

Final project

Note to people

outside CMU

Class Lectures: Tuesdays and Thursdays 10:30-11:50am in 4623 Wean

Hall

This course is targeted at graduate students who want to learn about and perform

current-day research in artificial intelligence---the discipline of designing intelligent

decision-making machines. Techniques from probability, statistics, game theory,

algorithms, operations research and optimal control are increasingly important tools for

improving the intelligence and autonomy of machines, whether those machines are

robots surveying Antarctica, schedulers moving billions of dollars of inventory, spacecraft

deciding which experiments to perform, or vehicles negotiating for lanes on the freeway.

This AI course is a review of a selected set of these tools. The course will cover the

ideas underlying these tools, their implementation, and how to use them or extend them

in your research.

Prerequisites

Students entering the class should have a pre-existing working knowledge of linear

algebra, calculus, algorithms and data structures, and basic knowledge of computational

complexity though the class has been designed to allow students with a strong numerate

background to catch up and fully participate. Students should also be able to program in

C, C++, or Java.

Mailing Lists

Class announcements will be broadcasted using a group email list:

15780students@cs.cmu.edu

For changes (incl. additions or removal) to your membership in the course list,

please make changes directly via the list administration page.

Textbook

Textbook: Artificial Intelligence: A Modern Approach (2nd ed.), Russell and Norvig.

Grading

Class Participation (10%)

Homeworks (4-5 assignments 45%)

Final project (25%)

"Mid"-term exam: 4/9 (20%)

15-780 Graduate Artificial Intelligence Spring 2009
Geoff Gordon and Tuomas Sandholm

School of Computer Science, Carnegie Mellon University

About | People | Lectures | Recitations | Homework | Projects
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning

5

[Matsuda et al.], based on ACT-R [Anderson et al.]
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(cell
(value “4x - 2”))

SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning

5

[Matsuda et al.], based on ACT-R [Anderson et al.]
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning

6

(problem
(interface-elements
(table
(column
(cell
(value “4x - 2”))

(cell
(value “4x”))
...)

(column
(cell
(value “2x + 5”))

(cell
(name “selection”)
(value “”))

...)))
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning

7



Geoff Gordon—SLC meeting—Oct 2010

SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning

7

If (a structure in WM) 
satisfies (constraints)
then do (action)

what
when
how
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning

7

If (a structure in WM) 
satisfies (constraints)
then do (action)

what
when
how

(table
(column
(cell
(value ?x))

(constant-term ?x ?c)
(non-null ?c)

(enter (subtract ?x ?c) ...
(enter (subtract ?z ?c) ...
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning
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(table
(column
(cell
(value ?u:string))

?v:cell
?*)

(column
(cell
(value ?z:string))

?w:cell
?*))

(constant-term ?u ?c)
(non-null ?c)
==>
(enter (subtract ?u ?c) ?v)
(enter (subtract ?z ?c) ?w)

what

when
how
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SIMSTUDENT MODEL

Declarative knowledge

Perception

Production rules

Learning
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TYPES OF LEARNING

Natural learning

by student

Simulated learning

by SimStudent

Model learning

making SimStudent a better model
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TYPES OF LEARNING

Natural learning

by student

Simulated learning

by SimStudent

Model learning

making SimStudent a better model

10

“machine learning”

Machine learning can help us discover detailed, accurate 
models of how students learn

Machine learning can also be part of our models
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SIMSTUDENT LEARNING

Inductive Logic Programming (ILP)

from worked examples: Programming by Demonstration

trial and error w/ immediate feedback: Tutored Problem Solving

Mixture of several algorithms:

Version space [Mitchell] for what

FOIL [Quinlan] for when

“most specific generalization” for how

12
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SIMSTUDENT: RESULTS

Does SimStudent learn good rule sets?

e.g., so that model tracing works well

Does SimStudent learn rules like real students do?

in the right order, with the right amount of training data, making 
similar mistakes along the way

Study:

SimStudent solves a sequence of training problems

Learns new rules after each one

Use test set of problems to evaluate rules learned

13

Yes

Maybe
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SIMSTUDENT: TEST SET PERFORMANCE

# training problems
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SIMSTUDENT: WEAK FEATURE SET 
HUMAN-LIKE ERRORS

15

Also some non-human-
like errors

3 = 5 + 2x
8 = 2x⇏
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SIMSTUDENT: STRONG FEATURE SET
FEWER ERRORS, BUT NOT HUMAN-LIKE

# training problems

16
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WHERE DO FEATURES COME FROM?

SimStudent performance depends strongly on feature set

but SimStudent says nothing about where features comes from

We should expand scope of model to capture new interesting area: 
how does student acquire features?

Perhaps to make human-like errors we need to learn features at 
the same time as rules

Instance of larger problem: not enough learning

17
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One of the main tenets of ACT-R is that human 
cognition represents the probabilistic nature of 
the environment and … is Bayesian in nature.

[Sanner, Anderson, Lebiere, Lovett, 2000]
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EXAMPLE: BOARD GAMES

Chess: deep search + pattern recognition

humans have excellent pattern recognition 
(snap evaluation of position strength)

else, could not match Deep Blue, which 
considers 108 × more positions

Backgammon: even more pattern recognition

top humans and computers use shallow 
search (a few ply)

19

In both games: difficult statistical learning problem (with highly delayed 
and noisy feedback!) embedded in rule selection problem
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REPRESENTATION

“Logical production systems” do not support statistical reasoning

nor do certainty factors, nonmonotonic logic, fuzzy logic, …

at least, not in a scalable way—this is a lesson of AI 1965–1985

to do probabilistic reasoning, we need probabilities!
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REPRESENTATION

“Logical production systems” do not support statistical reasoning

nor do certainty factors, nonmonotonic logic, fuzzy logic, …

at least, not in a scalable way—this is a lesson of AI 1965–1985

to do probabilistic reasoning, we need probabilities!

What representation can we use?

a production system based on probabilistic logic

the same way SimStudent’s production system is based on FOL

20
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PROBABILISTIC LOGIC

Ordinary production rule:

if we see condition,          
conclude consequent

condition binds variables to 
objects, consequent uses them

Probabilistic production rule:

if we see condition,           
and unseen coin(p) shows H,          
conclude consequent

e.g., Independent Choice Logic 
[Poole]

21

(table
(column
(cell
(value ?u:string))

?v:cell
?*)

(column
(cell
(value ?z:string))

?w:cell
?*))

(constant-term ?u ?c)
(non-null ?c)
==>
(enter (subtract ?u ?c) ?v)
(enter (subtract ?z ?c) ?w)
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TINY DIFFERENCE 
MAKES ALL THE DIFFERENCE

Probabilistic logic strictly generalizes

Ordinary production systems (set p=1)

Graphical models (Bayes nets, Markov random fields, …)

Markov logic networks

Acyclic fragment of FOL

But at a price

in ordinary production system, time for chain of reasoning is 
linear in number of rule instances

w/o further restrictions, finding consequences of given set of 
probabilistic rule instances is #P-complete

22



Geoff Gordon—SLC meeting—Oct 2010

FURTHER RESTRICTIONS

Simulated learning (= finding new rules and features, improving 
existing ones)

can afford to spend time to approximate the posterior over sets 
of probabilistic production rules

see Proc. NIPS,  AISTATS, ICML, …

structured SVMs, Latent Dirichlet Allocation, Bayesian PCA, …

example in a couple of slides

Performance (= using existing rules)

must be fast!  ~100ms per rule

must use some drastic restriction and/or approximation

23
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PROPOSAL: STATISTICAL REASONING
AT PERFORMANCE TIME

Small network of active productions connects small set of 
active propositions

production “firing” in traditional system = becoming “active” here

chunks in WM in traditional system = “active” propositions here

WM now a distribution over active prop’ns (v. activation level)

MCMC (e.g., Gibbs sampling, particle filter) within active network

initial conclusions fast, improve with deliberation

reduces to traditional handling of productions when p→1

When active network gets too big, prune

replace a portion of network with statistics from recent samples

24
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EXAMPLE OF ACTIVE NETWORK

25

4  *  x  -  2
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THE CASE FOR BAYES: CLASSICAL 
CONDITIONING

Only fully Bayesian inference/learning was able to capture both effects 
[Courville, Daw, Gordon, Touretzky, NIPS 2003]

With few A-X trials, animal learns 1 “rule”: (A, X, US) all associated

With more, animal learns 2 “rules”: (A, X, no US) v. (A, US, no X)

26

Effect name
2nd-order 

conditioning
Conditioned 

inhibition

A-X trials few many

A-US trials many many

test: X predicts US? ↑ ↓

Neutral stimuli: A, X 
(e.g., bell, light, buzzer)

Elicits involuntary 
response: US (e.g., 

shock)
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Figure 2: A summary of the simulation results. Error bars indicate the 3σ margin in the
standard error of the estimate (we omit very small error bars). (a) P (US | X,D) and
P (US | A,D) as a function of A-X trials. For few trials (2 to 8), P (US | X,D) is high,
indicative of second-order conditioning. (b) P (US | X,B,D) and P (US | B,D) as a
function of number of A-X trials. After 10 trials, X is able to significantly reduce the
predicted probability of reinforcement generated by the presentation of B. (c) Results of
a retardation test. With many A-X trials, acquisition of an excitatory association to X is
retarded.

greater posterior density (Figure 3c). An example of such a model is shown in Figure 3b.
In the model, X is made a conditioned inhibitor by a negative valued weight between x2

and X . In testing X with a transfer excitor B, as shown in Figure 2, this weight acts to
cancel a positive correlation between B and the US . Note that the shift from excitation
to inhibition is due to inclusion of uncertainty over models; inferring the parameters with
the more complex model fixed would result in immediate inhibition. In their experiment,
Yin et al. also conducted a retardation test of conditioned inhibition for X . We follow
their procedure and include in D 3 X-US trials. Our retardation test results are shown in
Figure 2 and are in agreement with the findings of Yin et al.

A further mystery about conditioned inhibitors, from the perspective of the benchmark
theory of Rescorla and Wagner [7], is the nonextinction effect: repeated presentations of a
conditioned inhibitor X alone and unreinforced do not extinguish its inhibitory properties.
An experiment by Williams and Overmier [10] demonstrated that unpaired presentations of
a conditioned inhibitor can actually enhance its ability to suppress responding in a transfer
test. Our model shows the same effect, as illustrated with a dramatic test in Figure 4. Here
we used the previous dataset with only 8 A-X pairings and added a number of unpaired
presentations of X . The additional unpaired presentations shift the model from a second-
order conditioning regime to a conditioned inhibition regime. The extinction trials suppress
posterior density over simple models that exhibit a positive correlation betweenX andUS ,
shifting density to more complex models and unmasking the inhibitor.

4 Discussion

We have demonstrated our ideas in the context of a very abstract set of candidate models,
ignoring the temporal arrangement of trials and of the events within them. Obviously, both
of these issues have important effects, and the present framework can be straightforwardly
generalized to account for them, with the addition of temporal dependencies to the latent
variables [1] and the removal of the stationarity assumption [4].

An odd but key concept in early models of classical conditioning is the “configural unit,”
a detector for a conjunction of co-active stimuli. “Configural learning” theories (e.g. [6])

pr
ob
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A-X trials→

P(US | A)
P(US | X)
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BISTABLE PERCEPTS, BINOCULAR FUSION, 
AND GIBBS SAMPLING

Bistability in binocular rivalry

Distribution of dominance durations

Contextual bias, initial bias

Traveling waves

Fusion (single false percept halfway between actual stimuli)
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Figure 1: (A) Necker cube. (B) Binocular rivalry stimuli. (C) Markov random field image model with lattice
and ring (D) topologies. Shaded nodes correspond to observed variables; unshaded nodes correspond to hidden
variables.

which is expected to be extremely high-dimensional and complex. The visual system might be
able to evaluate only relative probabilities of two similar hypotheses (as in Metropolis-Hastings),
or to compute local conditional posteriors of one scene variable conditioned on its neighbors (as
in Gibbs sampling). We also do not make extra assumptions about weighting samples based on
memory decay, or require that conscious perceptual decisions be based on a memory for samples;
consciousness has access to only the current state of the Markov chain, reflecting the observer’s
current brain state.

Here we show that several characteristic phenomena of multistability derive naturally from applying
standard MCMC inference to Markov random fields (MRFs) – high dimensional, loosely coupled
graphical models with spatial structure characteristic of many low-level and mid-level vision prob-
lems. Specifically, we capture the classic findings of Gamma-distributed mode-switching times in
bistable perception; the biasing effects of contextual stimuli; the situations in which fused (rather
than bistable) percepts occur, and the propagation of perceptual switches in traveling waves across
the visual field. Although it is unlikely that this MCMC scheme corresponds exactly to any process
in the visual system, and it is almost surely too simplified or limited as a general account of percep-
tual multistability, our results suggest that MCMC could provide a promising foundation on which
to build rational process-level accounts of human perception and perhaps cognition more generally.

2 Markov random field image model

Our starting point is a simple and schematic model of vision problems embodying the idea that
images are generated by a set of hidden variables with local dependencies. Specifically, we assume
that each observed image element xi is connected to a hidden variable zi by a directed edge, and each
hidden variable is connected to its neighbors (in set ci) by an undirected edge (thus implying that
each hidden variable is conditionally independent of all others given its neighbors). This Markov
property is often exploited in computer vision [8] because elements of an image tend to depend on
their adjacent neighbors, but are less influenced by more distant elements. Formally, this assumption
corresponds to a Markov random field (MRF). Different topologies of the MRF (e.g., lattice or ring)
can be used to capture the structure of different visual objects (Figure 1C,D). The joint distribution
over configurations of hidden and observed variables is given by:

P (z,x) = Z−1 exp

[
−
∑

i

R(xi|zi)− V (zi|zci)
]
, (1)

where Z is a normalizing constant, and R and V are potential functions. In a Gaussian MRF, the
conditional potential function over hidden node i is given by

V (zi|zci) = µi − λ
∑

j∈ci

(zi − zj)
2, (2)

where λ is a precision (inverse variance) parameter specifying the coupling between neighboring
hidden nodes; when λ is large, a node will be strongly influenced by its neighbors. The µi term
represents the prior mean of zi, which can be used to encode contextual biases, as we discuss below.

We construct the likelihood potential R(xi|zi) to express the ambiguity of the image by making it
multimodal: several different hidden causes are equally likely to have generated the image. Since

3

Figure 3: (A) Stimuli used by [5] in their experiment. On the top are the standard tilted grating patches presented
dichoptically. On the bottom are the tilted grating patches superimposed on a background of rightward-tilting
gratings, a contextual cue that biases dominance towards the rightward-tilting grating patch. (B) Simulated
timecourse of transient preference for a lattice-topology MRF with and without a contextual cue (averaged
over 100 runs of the sampler). (C) Empirical timecourse of transient preference fitted with a scaled cumulative
Gaussian function, reprinted with permission from [17].

influences, several studies have shown that contextual cues can bias the relative dominance of rival
stimuli. For example, [5] superimposed rivalrous tilted grating patches on a background of either
rightward or leftward tilting gratings (Figure 3A) and showed that the direction of background tilt
shifted dominance towards the monocular stimulus with context-compatible tilt. Following [20, 22],
we modeled this result by assuming that the effect of context is to shift the prior mean towards the
contextually-biased interpretation. We simulated this contextual bias by setting the prior mean µ =
1. Figure 3B shows the timecourse of transient preference (probability of a particular interpretation
at each timepoint) for the “context” and “no-context” simulations, illustrating this persistent bias.

Another property of this timeseries is the initial bias exhibited by both the context and no-context
conditions, a phenomenon observed experimentally [17, 22] (Figure 3C). In fact, this is a distinctive
property of Markov chains (as pointed out by [22]): MCMC algorithms generally take multiple
iterations before they converge to the stationary distribution [16]. This initial period is known as the
“burn-in.” Thus, human perceptual inference may similarly require an initial burn-in period to reach
the stationary distribution.

4.3 Deviations from stable rivalry: fusion

Most models have focused on the “stable” portions of the bistable dynamics of rivalry; however, in
addition to the mode-hopping behavior that characterizes this phenomenon, bistable percepts often
produce other states. In some conditions the two percepts are known to fuse, rather than rival: the
percept then becomes a composite or superposition of the two stimuli (and hence no alternation is
perceived). This fused perceptual state can be induced most reliably by decreasing the distance in
feature space between the two stimuli [11] (Figure 4B) or decreasing the contrast of both stimuli
[15]. These relations are shown schematically in Figure 4A. Neither neural, nor algorithmic, nor
computational models of rivalry have thus far attempted to explain these findings.

In experiments on “fusion”, subjects are given three options to report their percept: one of two global
precepts or something in between. We define such a fused percept as a perceptual state lying between
the two “bistable” modes — that is, an interpretation between the two rivalrous, high-probability
interpretations. We can interpret manipulation of feature space distance in terms of the distance
between the modes, and reductions of contrast as increases in the variance around the modes. When
such manipulations are introduced to the MRF model, the posterior distribution changes as in Figure
4A (inset). By making the modes closer together or increasing the variance around the modes,
greater probability mass is assigned to an intermediate zone between the modes—a fused percept.
Thus, manipulating stimulus separation (feature distance) or stimulus fidelity (contrast) changes
the parameterizations of the likelihood function, and these manipulations produce systematically
increasing odds of fused percepts, matching the phenomenology of these stimuli (Figure 4B).
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AN EXPERIMENT WITH BAYESIAN 
LEARNING IN SIMSTUDENT

Bayesian grammar induction learns how to parse from examples

4x - 2 = 3,  2x + 5 = 3x - 1

learn grammar by approximate Bayesian inference

Inside-Outside to parse training data w/ current grammar

EM to update parameters based on parse

Greedy search to propose new rules

Nodes in learned parse tree become features for SimStudent to 
use in rule learning

Two conditions: transfer (10 previous easier problems) or no 
transfer (weak features: character recognition only)

28

[Li, Cohen, Koedinger, Matsuda, 2010]
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RESULTS
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SUMMARY

SimStudent: a cognitive model of student learning & problem solving

Current version based on production system and ILP

My prediction: better cognitive models from Bayesian reasoning 
in a production system based on probabilistic logic

Experiments on learning productions, on MCMC and 
bistability/fusion, and on grammar induction

show: production system approach is plausible, Bayesian reasoning 
helps capture observed effects

30
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Brain Models and Mental Disease
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Horizontal (laminar) organization of the cortex

From: Hilgetag and Barbas, 
Scientific Ameriran, Feb., 2009

The cerebral cortex is a vast communication network 
interconnected by a large set of connections.

Only a few neurons, within specific layers are 
involved in each set of connections.

Are there rules that underlie the organization of 
cortico-cortical connections?
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B.  Moderate differences in laminar definitionA.  Large differences in laminar definition
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The structural model: Predicting the laminar pattern of connections from cortical structure 

Agranular Eulaminate II Dysgranular   Eulamina te I

I

V/VI

II/I II

Adapted from: Barbas and Rempel-Clower, 1997

Predicting cortico-cortical connections from cortical 
structure: implications for normal function and 
psychiatric diseases

Hypothesis for Development
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From Rakic, P. 2002

What is the significance of knowing 
the laminar origin and termination of 
connections?



4

1

2

3

4

5

6

1

2

3

4

5

6

Prefrontal cortex Temporal cortex

The microenvironment of the origin and termination of laminar-specific
connections varies.

Interaction of prefrontal pathways with excitatory and inhibitory
systems: corticocortical connections

From Barbas, 2006

By Timbie, Clare
CELEST
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Rhesus monkey                 Human

Prefrontal cortex
Premotor cortex
Motor cortex

10

Synaptic interactions of prefrontal areas associated with attention 
and cognitive control

From: Medalla and Barbas, 
Neuron, 2009
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From: Medalla and Barbas, 
Neuron, 2009

Interaction of prefrontal pathways at the synaptic level

From: Medalla and Barbas, Neuron, 2009

The ACC (area 32)
targets more inhibitory 
sites in DLPFC (area 9), 
and the synapses are 
larger than the pathway 
linking two related areas 
(area 46 to 9).
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Large boutons have more synaptic vesicles

From: Germuska et al., 2006, Cerebral Cortex, 2006

From: Medalla and Barbas, Neuron, 2009

The ACC targets preferentially CB inhibitory neurons, 
which are synaptically suited to reduce noise.
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From: Medalla and Barbas, Neuron, 2009

Pattern of connection from ACC (area 32) to DLPFC area 9

Common and distinct features of 
schizophrenia and autism:

Two sides of the same coin?
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Schizophrenia and Autism

have their roots in development

Pathology in schizophrenia

The number of pyramidal 
(excitatory) neurons is reduced in 
the deep layers of the anterior 
cingulate cortex (ACC) in 
schizophrenia (Benes et al., Biol. Psych., 50, 2001).

The deep layers of ACC project to 
the upper layers of dorsolateral 
prefrontal cortex.



10

B.  Moderate differences in laminar definitionA.  Large differences in laminar definition

HigherLowerHighLow 

HigherLowerHighLow

2-3

5-6

4-6

1-3

5-6

2-3

5-6 4-6

1-32-3

1-3

4-65-6

2-3

4-6

1-3

The structural model: Predicting the laminar pattern of connections from cortical structure 

Agranular Eulaminate II Dysgranular   Eulaminate I

I

V/VI

II/I II

Adapted from: Barbas and Rempel-Clower, 1997

Predicting cortico-cortical connections from cortical structure

From: Medalla and Barbas, Neuron, 2009

Pattern of connection from ACC (area 32) to DLPFC area 9: 
implications for schizophrenia
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The white matter below the frontal lobe, 
and especially the ACC, is enlarged in the 
brains of children with autism relative to 
controls.

Circuit Abnormalities in Autism: 
the White Matter

The autistic cases had fewer extra-large axons than normal controls
Deep white matter connects distant areas
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Superficial white matter connects nearby areas: Autistic brains had 
more small (thin) axons

From: Medalla and Barbas, Neuron, 2009

Pattern of connection from ACC (area 32) to DLPFC area 9: 
implications for autism
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